The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framewor...The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.展开更多
We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the informat...We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.展开更多
This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectatio...This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectations via nonlinear Markov chains. Com- pared to the author’s previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probabil- ity measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations. The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.展开更多
It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative ...It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative marginal utility. In this paper we show that for discrete time incomplete markets this result is not true.展开更多
We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios o...We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios of two kinds of risk measures, stop-loss premium and excess return on capital, respectively. Several examples and a Monte Carlo simulation study show the efficiency of our novel asymptotic expansions. Keywords smoothly varying condition, second-order regular variation, tail asymptotics, value-at-risk, con- ditional tail expectation, largest claims reinsurance, ratio of risk measure, excess return on capital展开更多
基金the National Basic Research Program of China (973 Program, No. 2007CB814900)the Natural Science Foundation of China (10671112)+1 种基金Shandong Province (Z2006A01)the New Century Excellent Young Teachers Program of Education Ministry of China
文摘The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.
基金Supported in part by National Natural Science Foundation of China Grant (No.10131040).The author also thanks the referee's constructive suggestions.
文摘We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.
基金Project supported by the National Natural Science Foundation of China(No.10131040).
文摘This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectations via nonlinear Markov chains. Com- pared to the author’s previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probabil- ity measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations. The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.
文摘It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative marginal utility. In this paper we show that for discrete time incomplete markets this result is not true.
基金supported by the Swiss National Science Foundation(Grant Nos.2000211401633/1,200021-134785 and 200021-1401633/1)Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(Grant No.RARE-318984)+1 种基金National Natural Science Foundation of China(Grant No.11171275)the Natural Science Foundation Project of Chongqing(Grant No.cstc2012jjA00029)
文摘We derive higher-order expansions of L-statistics of independent risks X1,..., Xn under conditions on the underlying distribution function F. The new results are applied to derive the asymptotic expansions of ratios of two kinds of risk measures, stop-loss premium and excess return on capital, respectively. Several examples and a Monte Carlo simulation study show the efficiency of our novel asymptotic expansions. Keywords smoothly varying condition, second-order regular variation, tail asymptotics, value-at-risk, con- ditional tail expectation, largest claims reinsurance, ratio of risk measure, excess return on capital