Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and ...The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and easy build-up of channels, designed measuring system can be used for a wide range of technical problems. This paper describes the design process, validation and conducting the first field test of this measuring system.展开更多
A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric perfo...A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performan...Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.展开更多
Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial mu...Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial muscle, if the DE motor is further developed, it might be possibly be able to drive a vehicle. Efficient robot driving, various industrial machines and the use of dielectric elastomer sensors to optimize the driving may also help solve the above problems from the perspective of eco-driving. This paper describes the latest level of development of dielectric elastomers, their main problems and solutions to these problems, and their potential applications. The possibilities and concrete plans for building local global smart cities (including local generation power for local consumption), efficient transportation, and environmental monitoring systems utilizing dielectric elastomers are also discussed.展开更多
In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has receiv...In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.展开更多
Based on the renovation of sponge and energy-saving facilities in a middle school in Nanning,this paper systematically studies the overall elevation of the campus,the composition of the drainage system and the layout ...Based on the renovation of sponge and energy-saving facilities in a middle school in Nanning,this paper systematically studies the overall elevation of the campus,the composition of the drainage system and the layout of space functions,and formulates a characteristic scheme for the renovation of sponge and energy-saving facilities according to the characteristics of the sloping campus.In order to control the total amount of rainwater runoff,the sponge transformation mainly adopts the transformation methods of partition catchment,upper storage and lower use,multi-stage detection and classification treatment.For the purpose of solar energy and wind energy utilization,solar photovoltaic panels and small-scale wind power generation system are adopted.The application effects of sponge and energy-saving facilities are estimated and evaluated.展开更多
Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed ...Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed data on potential renewable energy are important. The added value of this research is to investigate the suitability of satellite data locally in North Sinai in Egypt. The Tropical Rainfall Measuring Mission (TRMM) satellites and available data from ground rain gauges are studied at North Sinai of Egypt. Local multiplication factors and correlation equations on a monthly basis were developed based on short term historical data. General equation based on short term data was developed to enhance TRMM data for the rainy season to minimize spatial and temporal errors. This equation would be very useful, especially in the ungauged areas in North Sinai to adjust TRMM rainfall data. TRMM data are spatially distributed, so it enhances the hydrology models for runoff estimation. This runoff could be used as non conventional water resource. The runoff was estimated in the RasSudr area in the 2010 storm to be 3.6 (m3/s). The hydropower of this runoff was estimated and ranged from 15,135 to 57,352 (kWh). The solar energy is studied from (NASA) satellite data. The monthly averaged solar energy was estimated to get possible generated power from the solar panel at locations of rainfall ground stations. The generated solar energy would supply self-sufficient energy for ground stations measuring instruments rather than batteries. The results show that a small solar panel project of 200 (m2) could safe electric network power by generating about 20,385 (kWh/year). The results of this study could help in enhancing adapting plans for climate change and runoff estimation model that needs grid data, especially in the area lacking ground data.展开更多
With the growing number and capacity of photovoltaic(PV)installations connected to distribution networks,power quality issues related to voltage regulation are becoming relevant problems for power distribution compani...With the growing number and capacity of photovoltaic(PV)installations connected to distribution networks,power quality issues related to voltage regulation are becoming relevant problems for power distribution companies and for PV owners.In many countries,like Italy,this has required the revision of the standards concerning the connection to the public distribution network of distributed renewable generation.The new standards require a flexible operation of generation plants that have to be capable to change the active and reactive power dynamically in function of the network parameters(i.e.frequency and network local voltage)in local control or following external commands.Therefore,this paper investigates the use of smart inverter in a critical PV installation,where relevant voltage fluctuations exist.A case study,with real network parameters monitoring data and measurements,is discussed in the paper with the aim of showing how‘smart’features of new inverters can be implemented to increase PV plant integration in low voltage distribution networks.展开更多
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and easy build-up of channels, designed measuring system can be used for a wide range of technical problems. This paper describes the design process, validation and conducting the first field test of this measuring system.
基金the High Technology Research and Development Program of China(No2003AA005031)
文摘A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
基金supported by The Swedish Energy AgencyThe Gothenburg Energy Research Foundation,The Goran Gustavsson Research Foundation,Angpanneforeningen’s Foundation for Research and Development,The Olle Engkvist Foundation,The J.Gust.Richert Foundation,CF Environmental Fund,Vargons Research Foundation,The Swedish Research Council grant No.621-2009-3417 and the Wallenius Foundation.
文摘Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.
文摘Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial muscle, if the DE motor is further developed, it might be possibly be able to drive a vehicle. Efficient robot driving, various industrial machines and the use of dielectric elastomer sensors to optimize the driving may also help solve the above problems from the perspective of eco-driving. This paper describes the latest level of development of dielectric elastomers, their main problems and solutions to these problems, and their potential applications. The possibilities and concrete plans for building local global smart cities (including local generation power for local consumption), efficient transportation, and environmental monitoring systems utilizing dielectric elastomers are also discussed.
文摘In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.
文摘Based on the renovation of sponge and energy-saving facilities in a middle school in Nanning,this paper systematically studies the overall elevation of the campus,the composition of the drainage system and the layout of space functions,and formulates a characteristic scheme for the renovation of sponge and energy-saving facilities according to the characteristics of the sloping campus.In order to control the total amount of rainwater runoff,the sponge transformation mainly adopts the transformation methods of partition catchment,upper storage and lower use,multi-stage detection and classification treatment.For the purpose of solar energy and wind energy utilization,solar photovoltaic panels and small-scale wind power generation system are adopted.The application effects of sponge and energy-saving facilities are estimated and evaluated.
文摘Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed data on potential renewable energy are important. The added value of this research is to investigate the suitability of satellite data locally in North Sinai in Egypt. The Tropical Rainfall Measuring Mission (TRMM) satellites and available data from ground rain gauges are studied at North Sinai of Egypt. Local multiplication factors and correlation equations on a monthly basis were developed based on short term historical data. General equation based on short term data was developed to enhance TRMM data for the rainy season to minimize spatial and temporal errors. This equation would be very useful, especially in the ungauged areas in North Sinai to adjust TRMM rainfall data. TRMM data are spatially distributed, so it enhances the hydrology models for runoff estimation. This runoff could be used as non conventional water resource. The runoff was estimated in the RasSudr area in the 2010 storm to be 3.6 (m3/s). The hydropower of this runoff was estimated and ranged from 15,135 to 57,352 (kWh). The solar energy is studied from (NASA) satellite data. The monthly averaged solar energy was estimated to get possible generated power from the solar panel at locations of rainfall ground stations. The generated solar energy would supply self-sufficient energy for ground stations measuring instruments rather than batteries. The results show that a small solar panel project of 200 (m2) could safe electric network power by generating about 20,385 (kWh/year). The results of this study could help in enhancing adapting plans for climate change and runoff estimation model that needs grid data, especially in the area lacking ground data.
文摘With the growing number and capacity of photovoltaic(PV)installations connected to distribution networks,power quality issues related to voltage regulation are becoming relevant problems for power distribution companies and for PV owners.In many countries,like Italy,this has required the revision of the standards concerning the connection to the public distribution network of distributed renewable generation.The new standards require a flexible operation of generation plants that have to be capable to change the active and reactive power dynamically in function of the network parameters(i.e.frequency and network local voltage)in local control or following external commands.Therefore,this paper investigates the use of smart inverter in a critical PV installation,where relevant voltage fluctuations exist.A case study,with real network parameters monitoring data and measurements,is discussed in the paper with the aim of showing how‘smart’features of new inverters can be implemented to increase PV plant integration in low voltage distribution networks.