A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration under mildly hostile sea conditions, which has affected the normal operation of the platform. Since the st...A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration under mildly hostile sea conditions, which has affected the normal operation of the platform. Since the structure was designed to sustain more severe wave climate, the cause of the excessive vibration has been suspected to originate from other sources. The main objectives of this study are to investigate the causes of the excessive vibration, and to explore possible remedies to solve the problem. In this paper, the vibration behavior of the offshore platform is analyzed by means of finite element (FE) modeling, field measurements and laboratory test. Results of analysis suggest that relative movement and impact between the piles and the jacket legs exist, i.e. the piles and the jacket are not perfectly connected. The disconnection of the piles and jacket weakens the overall stiffness of the platform, and therefore produces unexpected excessive vibration. In this study, measures for reducing the excessive vibration are proposed to control the response of the platform.展开更多
Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious us...Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious user can forge proof of inexistent system states. This paper proposes a trustworthy integrity measurement architecture, BBACIMA, through enforcing behavior-based access control for trusted platform module (TPM). BBACIMA introduces a TPM reference monitor (TPMRM) to ensure the trustworthiness of integrity measurement. TPMRM enforces behavior-based access control for the TPM and is isolated from other entities which may be malicious. TPMRM is the only entity manipulating TPM directly and all PCR (platform configuration register) operation requests must pass through the security check of it so that only trusted processes can do measurement and produce the proof of system states. Through these mechanisms malicious user can not enforce attack which is feasible in current measurement architectures.展开更多
In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performanc...In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.50179014)
文摘A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration under mildly hostile sea conditions, which has affected the normal operation of the platform. Since the structure was designed to sustain more severe wave climate, the cause of the excessive vibration has been suspected to originate from other sources. The main objectives of this study are to investigate the causes of the excessive vibration, and to explore possible remedies to solve the problem. In this paper, the vibration behavior of the offshore platform is analyzed by means of finite element (FE) modeling, field measurements and laboratory test. Results of analysis suggest that relative movement and impact between the piles and the jacket legs exist, i.e. the piles and the jacket are not perfectly connected. The disconnection of the piles and jacket weakens the overall stiffness of the platform, and therefore produces unexpected excessive vibration. In this study, measures for reducing the excessive vibration are proposed to control the response of the platform.
基金the National High Technology Research and Development Plan of China (2007AA01Z412)the National Key Technology R&D Program of China (2006BAH02A02)the National Natural Science Foundation of China (60603017)
文摘Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious user can forge proof of inexistent system states. This paper proposes a trustworthy integrity measurement architecture, BBACIMA, through enforcing behavior-based access control for trusted platform module (TPM). BBACIMA introduces a TPM reference monitor (TPMRM) to ensure the trustworthiness of integrity measurement. TPMRM enforces behavior-based access control for the TPM and is isolated from other entities which may be malicious. TPMRM is the only entity manipulating TPM directly and all PCR (platform configuration register) operation requests must pass through the security check of it so that only trusted processes can do measurement and produce the proof of system states. Through these mechanisms malicious user can not enforce attack which is feasible in current measurement architectures.
文摘In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.