期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unascertained measurement classifying model of goal collapse prediction 被引量:8
1
作者 董陇军 彭刚剑 +2 位作者 付玉华 白云飞 刘有芳 《Journal of Coal Science & Engineering(China)》 2008年第2期221-224,共4页
Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are ... Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation. 展开更多
关键词 unascertained measurement classifying model GOAF collapse prediction mining engineering
下载PDF
GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update 被引量:19
2
作者 Houzeng HAN Jian WANG Mingyi DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期556-566,共11页
An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) s... An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) suffers the problem for which the uncertainty of the statistical properties to dynamic and measurement models will degrade the performance.In this research, an Adaptive Interacting Multiple Model(AIMM) filter is developed to enhance performance. The soft-switching property of Interacting Multiple Model(IMM) algorithm allows the adaptation between two levels of process noise, namely lower and upper bounds of the process noise. In particular, the Sage adaptive filtering is applied to adapt the measurement covariance on line. In addition, a classified measurement update strategy is utilized, which updates the pseudorange and Doppler observations sequentially. A field experiment was conducted to validate the proposed algorithm, the pseudorange and Doppler observations from Global Positioning System(GPS) and Bei Dou Navigation Satellite System(BDS) were post-processed in differential mode.The results indicate that decimeter-level positioning accuracy is achievable with AIMM for GPS/INS and GPS/BDS/INS configurations, and the position accuracy is improved by 35.8%, 34.3% and 33.9% for north, east and height components, respectively, compared to the CEKF counterpartfor GPS/BDS/INS. Degraded performance for BDS/INS is obtained due to the lower precision of BDS pseudorange observations. 展开更多
关键词 Adaptive filtering BeiDou navigation satellite system (BDS) Classified measurement update Global positioning system (GPS) Inertial navigation system (INS) Interacting multiple model Tightly coupled
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部