A novel thin layer cell equipped with thin layer gas electrode(TLGE)was studied as electrochemical gas sensor for the measurement of dissolved oxygen in water or aqueous solutions. The working electrode(TLGE)is a hydr...A novel thin layer cell equipped with thin layer gas electrode(TLGE)was studied as electrochemical gas sensor for the measurement of dissolved oxygen in water or aqueous solutions. The working electrode(TLGE)is a hydrophohic gas diffusing electrode placed between the cell electrolyte and the solution to be tested.The hydrophobic pores in TLGE serve as a gas chamber. After the sampling period,in which the partial pressure of dissolved oxygen in test solution becomes in equilibrium with that in the gas chamber,the TLGE is polarized with square wave or linear potential signal.Then the Faradaic charge (Q) consumed in depletion of the oxygen contained in pores of TLGE is measured.The main merits of this system are good linearity between the partial pressure of dissolved oxygen in test solution and Q,low zero-reading,negligible liquid-gas difference,con- venient calibration and very low temperature coefficient(ca.0.5%/℃).This technique can also be applied to the measurement of oxygen partial pressure in gas phases.展开更多
The influence of pH and metallographic structure on the corrosion behavior of copper-drawn steel is studied with the simulated system.The effect of pH on the corrosion behavior of copper-drawn steel has been investiga...The influence of pH and metallographic structure on the corrosion behavior of copper-drawn steel is studied with the simulated system.The effect of pH on the corrosion behavior of copper-drawn steel has been investigated using open-circuit potential,potentiodynamic polarization,galvanic current measurement,scanning electron microscopy and scanning vibrating electrode technique techniques.The steel is corroded as anode,while the corrosion of copper plate is protected as cathode.All the results revealed that pH and metallographic structure had a significant influence on the corrosion behavior of copper-drawn steel.With the decrease in pH value from 6 to 2.4,the corrosion rate of copper-drawn steel galvanic couple(Cu-Fe GC)obviously increased in the simulated solution of acidic red soil.The electric field formed by the Cu-Fe GC changes the direction of ion migration between the copper and drawn steel electrodes,which impacts the composition and microstructure of corrosion products formed on the electrode surface.展开更多
文摘A novel thin layer cell equipped with thin layer gas electrode(TLGE)was studied as electrochemical gas sensor for the measurement of dissolved oxygen in water or aqueous solutions. The working electrode(TLGE)is a hydrophohic gas diffusing electrode placed between the cell electrolyte and the solution to be tested.The hydrophobic pores in TLGE serve as a gas chamber. After the sampling period,in which the partial pressure of dissolved oxygen in test solution becomes in equilibrium with that in the gas chamber,the TLGE is polarized with square wave or linear potential signal.Then the Faradaic charge (Q) consumed in depletion of the oxygen contained in pores of TLGE is measured.The main merits of this system are good linearity between the partial pressure of dissolved oxygen in test solution and Q,low zero-reading,negligible liquid-gas difference,con- venient calibration and very low temperature coefficient(ca.0.5%/℃).This technique can also be applied to the measurement of oxygen partial pressure in gas phases.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.19DZ2271100)。
文摘The influence of pH and metallographic structure on the corrosion behavior of copper-drawn steel is studied with the simulated system.The effect of pH on the corrosion behavior of copper-drawn steel has been investigated using open-circuit potential,potentiodynamic polarization,galvanic current measurement,scanning electron microscopy and scanning vibrating electrode technique techniques.The steel is corroded as anode,while the corrosion of copper plate is protected as cathode.All the results revealed that pH and metallographic structure had a significant influence on the corrosion behavior of copper-drawn steel.With the decrease in pH value from 6 to 2.4,the corrosion rate of copper-drawn steel galvanic couple(Cu-Fe GC)obviously increased in the simulated solution of acidic red soil.The electric field formed by the Cu-Fe GC changes the direction of ion migration between the copper and drawn steel electrodes,which impacts the composition and microstructure of corrosion products formed on the electrode surface.