Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most comm...Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency. However, several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements. As such, thoroughly examining the performance of these two different DIC methods seems to be highly necessary. Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element (subset) size is no less than 11 pixels.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build ...Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.展开更多
The corrosion behavior of a rusted 550 MPa grade offshore platform steel in Clcontaining environment was investigated.The results revealed that the corrosion process can be divided into initial stage in which corrosio...The corrosion behavior of a rusted 550 MPa grade offshore platform steel in Clcontaining environment was investigated.The results revealed that the corrosion process can be divided into initial stage in which corrosion rate increased with accumulation of corrosion products and later stage in which homogeneous and compact rust layer started to protect steel substrate out of corrosion mediums.On the contrary,structural analysis of rust layers by X-ray diffraction showed that α-FeOOH increased from 1.3% to 3.6% and the Fe3O4 increased from 1.0% to 1.5% while γ-FeOOH reduced slightly according to corrosion time increased from 30 cycles to 73 cycles.The results of electron probe microanalysis indicated that Cr concentrated mainly in the inner region of the rust,inner/outer interface especially,whereas Ni and Cu were uniformly distributed all over the rust after 73 corrosion cycles.According to electrochemical measurements,it was found that the corrosion rate of rusted steel reduced from 0.61 mm/a after 45 cycles to 0.34 mm/a after 85 cycles,44.3% reduction approximately,and Rrust values increased with increment of corrosion time.Therefore,formation of compact inner rust layer and enrichment of Cr are important to improve corrosion resistance of offshore platform steel.展开更多
In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote r...In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.展开更多
基金supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy(KF16162)
文摘Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency. However, several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements. As such, thoroughly examining the performance of these two different DIC methods seems to be highly necessary. Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element (subset) size is no less than 11 pixels.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.
基金supported by the National Natural Science Foundation of China(51322904 and 51279127)the Program for New Century Excellent Talents in University(HCET-11-0370)
文摘Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.
基金Item Sponsored by High Technology Research and Development Program(863Program) of China(2007AA03Z504)
文摘The corrosion behavior of a rusted 550 MPa grade offshore platform steel in Clcontaining environment was investigated.The results revealed that the corrosion process can be divided into initial stage in which corrosion rate increased with accumulation of corrosion products and later stage in which homogeneous and compact rust layer started to protect steel substrate out of corrosion mediums.On the contrary,structural analysis of rust layers by X-ray diffraction showed that α-FeOOH increased from 1.3% to 3.6% and the Fe3O4 increased from 1.0% to 1.5% while γ-FeOOH reduced slightly according to corrosion time increased from 30 cycles to 73 cycles.The results of electron probe microanalysis indicated that Cr concentrated mainly in the inner region of the rust,inner/outer interface especially,whereas Ni and Cu were uniformly distributed all over the rust after 73 corrosion cycles.According to electrochemical measurements,it was found that the corrosion rate of rusted steel reduced from 0.61 mm/a after 45 cycles to 0.34 mm/a after 85 cycles,44.3% reduction approximately,and Rrust values increased with increment of corrosion time.Therefore,formation of compact inner rust layer and enrichment of Cr are important to improve corrosion resistance of offshore platform steel.
基金Supported by the China Postdoctoral Science Foundation(2013M531560)the Technology Innovation Plan in Traffic of Shandong Province(2012A15)the Science&Technology Development Projects of Shandong Province(2014GSF120015)
文摘In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.