In this work,we propose a method using frequency-modulated continuous-wave(FMCW)self-mixing interferometry(SMI)and all-phase fast Fourier transform(APFFT)for simultaneous measurement of speed and distance.APFFT offers...In this work,we propose a method using frequency-modulated continuous-wave(FMCW)self-mixing interferometry(SMI)and all-phase fast Fourier transform(APFFT)for simultaneous measurement of speed and distance.APFFT offers superior accuracy in frequency determination by mitigating issues like the fence effect and spectrum leakage,contributing to the high-accuracy measurement for speed and distance.Both simulations and experiments have demonstrated relative errors at the levels of 10^(−4) and 10^(−3) for distance and speed measurements,respectively.Furthermore,factors impacting measurement performance have been discussed.The proposed method provides a high-performance and cost-effective solution for distance and speed measurements,applicable across scientific research and various industrial domains.展开更多
Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes grea...Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes great contributions to safe-driving. This paper presents a method which can be used to detect preceding vehicles and get the distance between own car and the car ahead. Firstly, an adaptive threshold method is used to get shadow feature, and a shadow!area merging approach is used to deal with the distortion of the shadow border. Region of interest(ROI) is obtained using shadow feature. Then in the ROI, symmetry feature is analyzed to verify whether there are vehicles and to locate the vehicles. Finally, using monocular vision distance measurement based on camera interior parameters and geometrical reasoning, we get the distance between own car and the preceding one. Experimental results show that the proposed method can detect the preceding vehicle effectively and get the distance between vehicles accurately.展开更多
基金supported by the National Natural Science Foundation of China(No.62005234)the China Scholarship Council Post-Doctoral Program(No.202107230002)the Natural Science Foundation of Hunan Province(No.2024JJ6434).
文摘In this work,we propose a method using frequency-modulated continuous-wave(FMCW)self-mixing interferometry(SMI)and all-phase fast Fourier transform(APFFT)for simultaneous measurement of speed and distance.APFFT offers superior accuracy in frequency determination by mitigating issues like the fence effect and spectrum leakage,contributing to the high-accuracy measurement for speed and distance.Both simulations and experiments have demonstrated relative errors at the levels of 10^(−4) and 10^(−3) for distance and speed measurements,respectively.Furthermore,factors impacting measurement performance have been discussed.The proposed method provides a high-performance and cost-effective solution for distance and speed measurements,applicable across scientific research and various industrial domains.
基金Key Projects in the Tianjin Science & Technology Pillay Program
文摘Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes great contributions to safe-driving. This paper presents a method which can be used to detect preceding vehicles and get the distance between own car and the car ahead. Firstly, an adaptive threshold method is used to get shadow feature, and a shadow!area merging approach is used to deal with the distortion of the shadow border. Region of interest(ROI) is obtained using shadow feature. Then in the ROI, symmetry feature is analyzed to verify whether there are vehicles and to locate the vehicles. Finally, using monocular vision distance measurement based on camera interior parameters and geometrical reasoning, we get the distance between own car and the preceding one. Experimental results show that the proposed method can detect the preceding vehicle effectively and get the distance between vehicles accurately.