The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-g...The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.展开更多
The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiment...The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.展开更多
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff...We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.展开更多
For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frs...For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective.展开更多
The main function of Internet of Things is to collect and transmit data.At present,the data transmission in Internet of Things lacks effective trust attestation mechanism and trust traceability mechanism of data sourc...The main function of Internet of Things is to collect and transmit data.At present,the data transmission in Internet of Things lacks effective trust attestation mechanism and trust traceability mechanism of data source.To solve the above problems,a trust attestation mechanism for sensing layer nodes is presented.First a trusted group is established,and the node which is going to join the group needs to attest its identity and key attributes to the higher level node.Then the dynamic trust measurement value of the node can be obtained by measuring the node data transmission behavior.Finally the node encapsulates the key attributes and trust measurement value to use short message group signature to attest its trust to the challenger.This mechanism can measure the data sending and receiving behaviors of sensing nodes and track the data source,and it does not expose the privacy information of nodes and the sensing nodes can be traced effectively.The trust measurement for sensing nodes and verification is applicable to Internet of Things and the simulation experiment shows the trust attestation mechanism is flexible,practical and efficient.Besides,it can accurately and quickly identify the malicious nodes at the same time.The impact on the system performance is negligible.展开更多
基金The National Science and Technology Major Project under contract No.2016ZX05024-002the Exploration Project of China National Offshore Oil Corporation under contract Nos 2018OT-KT-SC-9 and 2019KT-SC-10。
文摘The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.
基金Supported by the National Natural Science Foundation of China(41472120)
文摘The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.
基金Supported by the National Natural Science Foundation of China(51304231)the Natural Science Foundation of Shandong Province(ZR2010EQ015)
文摘We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.
基金supported by the National Natural Science Foundation of China(No.61101186)
文摘For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective.
基金Supported by the National Natural Science Foundation of China(61501007)General Project of Science and Technology Project of Beijing Municipal Education Commission(KM201610005023)
文摘The main function of Internet of Things is to collect and transmit data.At present,the data transmission in Internet of Things lacks effective trust attestation mechanism and trust traceability mechanism of data source.To solve the above problems,a trust attestation mechanism for sensing layer nodes is presented.First a trusted group is established,and the node which is going to join the group needs to attest its identity and key attributes to the higher level node.Then the dynamic trust measurement value of the node can be obtained by measuring the node data transmission behavior.Finally the node encapsulates the key attributes and trust measurement value to use short message group signature to attest its trust to the challenger.This mechanism can measure the data sending and receiving behaviors of sensing nodes and track the data source,and it does not expose the privacy information of nodes and the sensing nodes can be traced effectively.The trust measurement for sensing nodes and verification is applicable to Internet of Things and the simulation experiment shows the trust attestation mechanism is flexible,practical and efficient.Besides,it can accurately and quickly identify the malicious nodes at the same time.The impact on the system performance is negligible.