This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This l...Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.展开更多
The distribution of measurement noise is usually assumed to be Gaussian in the optimal phasor measurement unit(PMU)placement(OPP)problem.However,this is not always accurate in practice.This paper proposes a new OPP me...The distribution of measurement noise is usually assumed to be Gaussian in the optimal phasor measurement unit(PMU)placement(OPP)problem.However,this is not always accurate in practice.This paper proposes a new OPP method for smart grids in which the effects of conventional measurements,limited channels of PMUs,zero-injection buses(ZIBs),single PMU loss contingency,state estimation error(SEE),and the maximum SEE variance(MSEEV)are considered.The SEE and MSEEV are both obtained using a robust t-distribution maximum likelihood estimator(MLE)because t-distribution is more flexible for modeling both Gaussian and non-Gaussian noises.The A-and G-optimal experimental criteria are utilized to form the SEE and MSEEV constraints.This allows the optimization problem to be converted into a linear objective function subject to linear matrix inequality observability constraints.The performance of the proposed OPP method is verified by the simulations of the IEEE 14-bus,30-bus,and 118-bus systems as well as the 211-bus practical distribution system in China.展开更多
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona...Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.展开更多
Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating ...Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimiza- tion. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.展开更多
Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a v...Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a validated inertial measurement unit(IMU)method for capturing knee RoM was deployed assessing postoperative RoM both in and outside of the clinical setting.The study's objectives were to evaluate the feasibility of continuously capturing knee RoM pre-/post-op via IMUs,dividing data into PT/non-PT portions of each day,and comparing PT/non-PT metrics.We hypothesized IMU-based clinical knee RoM would differ from IMU-based knee RoM captured outside clinical settings.10 patients(3 M,69±13 years)completed informed consent documents following ethics board approval.A validated IMU method captured long duration(8–12 h/day,~50 days)knee RoM pre-/post-op.Post-op metrics were subdivided(PT versus non-PT).Clinical RoM and patient reported outcome measures were also captured.Compliance and clinical disruption were evaluated.ANOVA compared post-op PT and non-PT means and change scores.Maximum flexion during PT was less than outside PT.PT stance/swing RoM and activity level were greater than outside PT.No temporal variable differences were found PT versus non-PT.IMU RoM measurements capture richer information than clinical measures.Maximum PT flexion was likely less than non-PT due to the exercises completed(i.e.high passive RoM vs.low RoM gait).PT gait flexion likely exceed non-PT because of‘white coat effects’wherein patients are closely monitored clinically.This implies data captured clinically represents optimum performance whereas data captured non-clinically represents realistic performance.展开更多
The existing out-of-step(OOS)protection schemes have proven to be deficient in the prevention of significant outages.OOS protection schemes must not operate in stable power swing,and rapidly isolate an asynchronous ge...The existing out-of-step(OOS)protection schemes have proven to be deficient in the prevention of significant outages.OOS protection schemes must not operate in stable power swing,and rapidly isolate an asynchronous generator or group of generators from the rest of the power system in case of unstable power swing.The paper proposes a novel phasor measurement unit(PMU)incorporating a polygon-shaped graphical algorithm for OOS protection of the synchronous generator.The unique PMU-based logic works further to classify the type of swing once the graphical scheme detects it,which can identify the complex power swing produced in the modern power system.The proposed algorithm can take the correct relaying decision in the event of power swing due to renewable energy integration,load encroachment,and transient faults.In this paper,the original and modified Kundur two-area system with a power system stabilizer(PSS)is used to test the proposed algorithm.In the end,it provides assessment results of the proposed relay on the Indian power system during the blackout in July 2012.The results demonstrate that the proposed algorithm is fast,accurate,and adaptive in the modern power system and shows better performance than the existing OOS protection schemes.展开更多
Phase measurement unit(PMU)is the key equipment for electric power system,which has been used to monitor and control power grid.But it is too expensive to deploy on each bus.So,we need to investigate how to deploy PMU...Phase measurement unit(PMU)is the key equipment for electric power system,which has been used to monitor and control power grid.But it is too expensive to deploy on each bus.So,we need to investigate how to deploy PMU to satisfy our observation requirements with minimum PMU numbers.This problem is called the optimal PMU placement(OPP).In this paper,we employ differential evolution(DE)algorithm to solve the OPP problem.Our optimization target is to make the power grid completely observable with maximum redundancy and minimum number of PMU.The proposed method is tested on IEEE 14-bus system,IEEE 30-bus system and IEEE 57-bus system respectively with considering the zero injection.展开更多
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w...Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.展开更多
Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those s...Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.展开更多
Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and control...Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.展开更多
Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GP...Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Sy...When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.展开更多
The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling alg...The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.展开更多
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
基金supported by the National Natural Sci-ence Foundation of China(No.52077195).
文摘Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.
基金supported by the National Natural Science Foundation of China (No.61903314)Basic Research Program of Science and Technology of Shenzhen,China (No.JCYJ20190809162807421)+1 种基金Natural Science Foundation of Fujian Province (No.2019J05020)National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)programme。
文摘The distribution of measurement noise is usually assumed to be Gaussian in the optimal phasor measurement unit(PMU)placement(OPP)problem.However,this is not always accurate in practice.This paper proposes a new OPP method for smart grids in which the effects of conventional measurements,limited channels of PMUs,zero-injection buses(ZIBs),single PMU loss contingency,state estimation error(SEE),and the maximum SEE variance(MSEEV)are considered.The SEE and MSEEV are both obtained using a robust t-distribution maximum likelihood estimator(MLE)because t-distribution is more flexible for modeling both Gaussian and non-Gaussian noises.The A-and G-optimal experimental criteria are utilized to form the SEE and MSEEV constraints.This allows the optimization problem to be converted into a linear objective function subject to linear matrix inequality observability constraints.The performance of the proposed OPP method is verified by the simulations of the IEEE 14-bus,30-bus,and 118-bus systems as well as the 211-bus practical distribution system in China.
文摘Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.
文摘Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimiza- tion. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.
基金This was work supported by the National Center for Advancing Translational Sciences of the National Institutes of Health[UL1TR001086].
文摘Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a validated inertial measurement unit(IMU)method for capturing knee RoM was deployed assessing postoperative RoM both in and outside of the clinical setting.The study's objectives were to evaluate the feasibility of continuously capturing knee RoM pre-/post-op via IMUs,dividing data into PT/non-PT portions of each day,and comparing PT/non-PT metrics.We hypothesized IMU-based clinical knee RoM would differ from IMU-based knee RoM captured outside clinical settings.10 patients(3 M,69±13 years)completed informed consent documents following ethics board approval.A validated IMU method captured long duration(8–12 h/day,~50 days)knee RoM pre-/post-op.Post-op metrics were subdivided(PT versus non-PT).Clinical RoM and patient reported outcome measures were also captured.Compliance and clinical disruption were evaluated.ANOVA compared post-op PT and non-PT means and change scores.Maximum flexion during PT was less than outside PT.PT stance/swing RoM and activity level were greater than outside PT.No temporal variable differences were found PT versus non-PT.IMU RoM measurements capture richer information than clinical measures.Maximum PT flexion was likely less than non-PT due to the exercises completed(i.e.high passive RoM vs.low RoM gait).PT gait flexion likely exceed non-PT because of‘white coat effects’wherein patients are closely monitored clinically.This implies data captured clinically represents optimum performance whereas data captured non-clinically represents realistic performance.
文摘The existing out-of-step(OOS)protection schemes have proven to be deficient in the prevention of significant outages.OOS protection schemes must not operate in stable power swing,and rapidly isolate an asynchronous generator or group of generators from the rest of the power system in case of unstable power swing.The paper proposes a novel phasor measurement unit(PMU)incorporating a polygon-shaped graphical algorithm for OOS protection of the synchronous generator.The unique PMU-based logic works further to classify the type of swing once the graphical scheme detects it,which can identify the complex power swing produced in the modern power system.The proposed algorithm can take the correct relaying decision in the event of power swing due to renewable energy integration,load encroachment,and transient faults.In this paper,the original and modified Kundur two-area system with a power system stabilizer(PSS)is used to test the proposed algorithm.In the end,it provides assessment results of the proposed relay on the Indian power system during the blackout in July 2012.The results demonstrate that the proposed algorithm is fast,accurate,and adaptive in the modern power system and shows better performance than the existing OOS protection schemes.
基金This work was supported by National Natural Science Foundation of China under grant 71071116Key Project of Basic Research of Shanghai Committee of Science&Technology under grant 10JC1415300Program for New Century Excellent Talents in University of Ministry of Education of China under grant 306023.
文摘Phase measurement unit(PMU)is the key equipment for electric power system,which has been used to monitor and control power grid.But it is too expensive to deploy on each bus.So,we need to investigate how to deploy PMU to satisfy our observation requirements with minimum PMU numbers.This problem is called the optimal PMU placement(OPP).In this paper,we employ differential evolution(DE)algorithm to solve the OPP problem.Our optimization target is to make the power grid completely observable with maximum redundancy and minimum number of PMU.The proposed method is tested on IEEE 14-bus system,IEEE 30-bus system and IEEE 57-bus system respectively with considering the zero injection.
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.
文摘Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L n()L n(Ω) -1 and Φ n(z;)Φ n(z;Ω) -1 where(z)=Ω(z)+Mδ(z-w); |w|>1,M is a positive definite matrix and δ is the Dirac matrix measure. Here, L n(·) means the leading coefficient of the orthonormal matrix polynomials Φ n(z;·). Finally, we deduce the asymptotic behavior of Φ n(w;)Φ n(w;Ω)* in the case when M=I.
文摘Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.
文摘Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金Supported by the National Basic Research Program (973)of China (No. 2009CB724003)the National High-Tech Research and Development Program (863) of China (No. 2007AA120302)
文摘When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.
文摘The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.