A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 ...A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.展开更多
Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed modul...Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed module in a natural way. Up to the present time, there are three kinds of conditional risk measures, whose model spaces are L^∞(E), L^p(E)(1 p +∞) and LF^p(E)(1 p +∞) respectively, and a conditional convex dual representation theorem has been established for each kind. The purpose of this paper is to study the relations among the three kinds of conditional risk measures together with their representation theorems. We first establish the relation between L^p(E) and LF^p(E), namely LF^p(E) = Hcc(L^p(E)), which shows that LF^p(E)is exactly the countable concatenation hull of L^p(E). Based on the precise relation, we then prove that every L^0(F)-convex L^p(E)-conditional risk measure(1 p +∞) can be uniquely extended to an L^0(F)-convex LF^p(E)-conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of L^p-conditional risk measures can be incorporated into that of LF^p(E)-conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of L^0-convex conditional risk measures.展开更多
Nitro MAC(French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid(HONO). This inst...Nitro MAC(French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid(HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography(HPLC)-visible absorption at540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer(LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. Nitro MAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below250 ppt was sampled. While Nitro MAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.展开更多
文摘A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.
基金supported by National Natural Science Foundation of China(Grant Nos.11171015 and 11301568)
文摘Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed module in a natural way. Up to the present time, there are three kinds of conditional risk measures, whose model spaces are L^∞(E), L^p(E)(1 p +∞) and LF^p(E)(1 p +∞) respectively, and a conditional convex dual representation theorem has been established for each kind. The purpose of this paper is to study the relations among the three kinds of conditional risk measures together with their representation theorems. We first establish the relation between L^p(E) and LF^p(E), namely LF^p(E) = Hcc(L^p(E)), which shows that LF^p(E)is exactly the countable concatenation hull of L^p(E). Based on the precise relation, we then prove that every L^0(F)-convex L^p(E)-conditional risk measure(1 p +∞) can be uniquely extended to an L^0(F)-convex LF^p(E)-conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of L^p-conditional risk measures can be incorporated into that of LF^p(E)-conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of L^0-convex conditional risk measures.
基金supported by EU Sixth Framework Programme (FP6) Eurochamp program (grant number 505968)EU Seventh Framework Programme (FP7) Eurochamp-2 program (grant number 228335)+2 种基金the NeoRad program from the French National Agency for Research (ANR-07-2/21-8908)the PhotoBat project from the Primequal program of the French Ministry of Environment (Primequal-project number 19599)the PhotoPaq LIFE + program (LIFE 08/ENV/F/000487 PHOTOPAQ)
文摘Nitro MAC(French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid(HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography(HPLC)-visible absorption at540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer(LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. Nitro MAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below250 ppt was sampled. While Nitro MAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.