The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of envi...The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.展开更多
There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incid...There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no ship passing by, which is defined by an on-board miniature sonar. And it can be. inunediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.展开更多
A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardwa...A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.展开更多
The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experi...The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experiments and testing results, and summarizes current problems of LED street lighting, proposing that LED lighting energy conservation should he "systematic energy saving" throughout the full life cycle based on the integration of products and applications.展开更多
An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum...An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.展开更多
<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong...<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong>Motivation</strong>: We aim at verifying that the total energy conserved in the interaction is <span style="white-space:nowrap;"><i></i></span><i>Pτ, i.e.<span style="white-space:nowrap;"></span></i> the product of the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> times the period τ of the X-rays. <strong>Hypothesis</strong>: Our investigation relies on the hypothesis that the voltage responsivity π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> of the capacitor should be small, according to previous research. The parameter π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> is the ratio between the voltage produced and the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays, and measures the performance of the capacitor in response to the X-rays. <strong>Method</strong>: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays according to a procedure already assessed with infrared and visible light. <strong>Results</strong>: In our experiments, <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> turns out to be in the range between 10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3 </sup>W to 10<sup>0</sup> W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. <strong>Conclusions</strong>: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.展开更多
A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between infor...A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between information-gathering efforts and achieving sufficient model credibility is crucial but often obscured by ambiguities. To address this gap, we model and calibrate a test bed with different levels of information (LOI). Beginning with an initial model based on building geometry (LOI 1), we progressively introduce additional information, including nameplate information (LOI 2), envelope conductivity (LOI 3), zone infiltration rate (LOI 4), AHU fan power (LOI 5), and HVAC data (LOI 6). The models are evaluated for accuracy, consistency, and the robustness of their predictions. Our results indicate that adding more information for calibration leads to improved data fit. However, this improvement is not uniform across all observed outputs due to identifiability issues. Furthermore, for energy-saving analysis, adding more information can significantly affect the projected energy savings by up to two times. Nevertheless, for ECM ranking, models that did not meet ASHRAE 14 accuracy thresholds can yield correct retrofit decisions. These findings underscore equifinality in modeling complex building systems. Clearly, predictive accuracy is not synonymous with model credibility. Therefore, to balance efforts in information-gathering and model reliability, it is crucial to (1) determine the minimum level of information required for calibration compatible with its intended purpose and (2) calibrate models with information closely linked to all outputs of interest, particularly when simultaneous accuracy for multiple outputs is necessary.展开更多
文摘The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the 10 important strategies of environmental management in China. The use of energy conservation emission reduction policies to promote industrial restructuring and upgrading and thus facilitate energy conservation and emission reduction is one of the important strategies of environmental management in China. Based on the systematic collection of 1,195 energy conservation emission reduction policies, we discuss the influence of individual measure and measure synergy of energy conservation and emission reduction policies respectively. The results show that the energy conservation and emission reduction policies have a significant effect on the overall promotion of industrial upgrading. The financial measures and guidance measures have a positive impact;the financial measures and guidance measures have significantly positive effect; however, the administrative measures, fiscal tax measures, and other economic measures do the opposite; the positive effect of the synergy of guidance measures and financial measures is greater than the negative effect of considering only the synergy of fiscal tax measures and other economic measures, and significantly greater than the negative effect of the synergy of administrative measures, fiscal tax measures, and other economic measures. We should strengthen and emphasize the use of the measure that has positive effect on industrial structure restructuring and upgrading individually and synergistically.
基金The project was financially supported by the High Tech Research and Development (863) Program (Grant No2005AA604220)by a grant from China National Offshore Oil Corporation (Grant No051100036)
文摘There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no ship passing by, which is defined by an on-board miniature sonar. And it can be. inunediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.
基金Project(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.
文摘The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experiments and testing results, and summarizes current problems of LED street lighting, proposing that LED lighting energy conservation should he "systematic energy saving" throughout the full life cycle based on the integration of products and applications.
文摘An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.
文摘<strong>Context and Background</strong>: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. <strong>Motivation</strong>: We aim at verifying that the total energy conserved in the interaction is <span style="white-space:nowrap;"><i></i></span><i>Pτ, i.e.<span style="white-space:nowrap;"></span></i> the product of the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> times the period τ of the X-rays. <strong>Hypothesis</strong>: Our investigation relies on the hypothesis that the voltage responsivity π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> of the capacitor should be small, according to previous research. The parameter π<span style="white-space:nowrap;"><i></i></span><i><sub>V<span style="white-space:nowrap;"></span></sub></i> is the ratio between the voltage produced and the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays, and measures the performance of the capacitor in response to the X-rays. <strong>Method</strong>: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> of the X-rays according to a procedure already assessed with infrared and visible light. <strong>Results</strong>: In our experiments, <span style="white-space:nowrap;"><i></i></span><i>P<span style="white-space:nowrap;"></span></i> turns out to be in the range between 10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3 </sup>W to 10<sup>0</sup> W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. <strong>Conclusions</strong>: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.
基金This research project is supported by the National Research Foundation,Singapore,and Ministry of National Development,Singapore under its Cities of Tomorrow R&D Programme(CoT Award COT-V4-2020-5)the National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)program through a grant to the Berkeley Education Alliance for Research in Singapore(BEARS)for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics(SinBerBEST)Program.
文摘A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between information-gathering efforts and achieving sufficient model credibility is crucial but often obscured by ambiguities. To address this gap, we model and calibrate a test bed with different levels of information (LOI). Beginning with an initial model based on building geometry (LOI 1), we progressively introduce additional information, including nameplate information (LOI 2), envelope conductivity (LOI 3), zone infiltration rate (LOI 4), AHU fan power (LOI 5), and HVAC data (LOI 6). The models are evaluated for accuracy, consistency, and the robustness of their predictions. Our results indicate that adding more information for calibration leads to improved data fit. However, this improvement is not uniform across all observed outputs due to identifiability issues. Furthermore, for energy-saving analysis, adding more information can significantly affect the projected energy savings by up to two times. Nevertheless, for ECM ranking, models that did not meet ASHRAE 14 accuracy thresholds can yield correct retrofit decisions. These findings underscore equifinality in modeling complex building systems. Clearly, predictive accuracy is not synonymous with model credibility. Therefore, to balance efforts in information-gathering and model reliability, it is crucial to (1) determine the minimum level of information required for calibration compatible with its intended purpose and (2) calibrate models with information closely linked to all outputs of interest, particularly when simultaneous accuracy for multiple outputs is necessary.