Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout...Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>展开更多
By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs. combining with the effect of coloured pump) noise, we use the linear approximation method to calcul...By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs. combining with the effect of coloured pump) noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time. both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR: while α increases to a certain number, SR appears.展开更多
The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique base...The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique based on Faraday modulation combined with the optical differential method to measure an extremely small polari- zation rotation angle with high sensitivity. The theoretical and experimental results show that common mode noise is reduced appreciably and signal to noise ratio is enhanced. The effectiveness of this technique has been demonstrated by measuring the Verdet constant of terbium gallium garnet glass and measuring the small polari- zation rotation angle. A sensitivity of enhancement of one order of magnitude has been achieved using differ- ential detection based on Faraday modulation.展开更多
An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine t...An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine the gain and loss of a laboratory CW Nd:YAG laser by using the Findlay-Clay approach. The ARR arm is then experimentally arranged inside the cavity of an arranged high power side-pumped CW Nd:YAG laser. A coated beam splitter with 50–50% re?ectivity at normal incidence is placed inside the cavity to provide a wide range of re?ectivity from 0 to 100%. This is performed by a rotatable stage and tilting the beam splitter by 10? with the steps of 0.05. By changing the input electrical power of the laser pump the variation of the output laser power is monitored for 20 individual re?ectivity of ARR arm. Average pump threshold power of about 180 W is obtained. With the help of the derived equations and obtained threshold power, small signal gain and loss associated with the emerging beam is estimated. It is verified that the former is very dependent to the input parameters. Laser efficiency is also measures 5.6% which is quite comparable with the reported values.展开更多
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
文摘Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>
基金This work was supported by the National Natural Science Foundation of China (No. 10275025) and Xiang- fan University Natural Science Foundation.
文摘By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs. combining with the effect of coloured pump) noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time. both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR: while α increases to a certain number, SR appears.
基金supported by the National Key R&D Program of China(No.2017YFB0503100)the National Science Foundation of China(NSFC)(No.61227902)
文摘The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique based on Faraday modulation combined with the optical differential method to measure an extremely small polari- zation rotation angle with high sensitivity. The theoretical and experimental results show that common mode noise is reduced appreciably and signal to noise ratio is enhanced. The effectiveness of this technique has been demonstrated by measuring the Verdet constant of terbium gallium garnet glass and measuring the small polari- zation rotation angle. A sensitivity of enhancement of one order of magnitude has been achieved using differ- ential detection based on Faraday modulation.
文摘An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine the gain and loss of a laboratory CW Nd:YAG laser by using the Findlay-Clay approach. The ARR arm is then experimentally arranged inside the cavity of an arranged high power side-pumped CW Nd:YAG laser. A coated beam splitter with 50–50% re?ectivity at normal incidence is placed inside the cavity to provide a wide range of re?ectivity from 0 to 100%. This is performed by a rotatable stage and tilting the beam splitter by 10? with the steps of 0.05. By changing the input electrical power of the laser pump the variation of the output laser power is monitored for 20 individual re?ectivity of ARR arm. Average pump threshold power of about 180 W is obtained. With the help of the derived equations and obtained threshold power, small signal gain and loss associated with the emerging beam is estimated. It is verified that the former is very dependent to the input parameters. Laser efficiency is also measures 5.6% which is quite comparable with the reported values.