A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are deri...A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.展开更多
Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and theref...Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.展开更多
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking p...In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frs...For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective.展开更多
The University of Birmingham has pioneered and adapted the use of the medical imaging technique known as positron emission tomography (PET) to the study of particulate, granular and multiphase flows in industrial an...The University of Birmingham has pioneered and adapted the use of the medical imaging technique known as positron emission tomography (PET) to the study of particulate, granular and multiphase flows in industrial and physical processes, This paper provides a review of the PET and complimentary positron emission particle tracking (PEPT) techniques and details their application to the study of particulate sys- tems, The current state of the art, recent developments and example results from many of the applications to which these techniques have been applied are highlighted.展开更多
基金supported by the National Natural Science Foundation of China (11102018)
文摘A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.
基金supported by the project (51425804) of the National Science Fund for Distinguished Young Scholars of Chinathe National Natural Science Foundation of China (NSFC) under grants U1234201, U1334203, and 51378439
文摘Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China(5130712811571133)+1 种基金the National Natural Science Foundation of Hubei Province(2013CFB437)the Natural Science Foundation of School of Science(HJGSK2014G121)
文摘In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金supported by the National Natural Science Foundation of China(No.61101186)
文摘For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective.
基金The Positron Imaging Centre is supported by an EPSRC platform grant, EP/F035845/1
文摘The University of Birmingham has pioneered and adapted the use of the medical imaging technique known as positron emission tomography (PET) to the study of particulate, granular and multiphase flows in industrial and physical processes, This paper provides a review of the PET and complimentary positron emission particle tracking (PEPT) techniques and details their application to the study of particulate sys- tems, The current state of the art, recent developments and example results from many of the applications to which these techniques have been applied are highlighted.