针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with li...针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with linear interpolation,PDS-LI)的传递算法。以杜长大、茂佳山黑猪和零号土猪3个品种为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘回归(partial least squares regression,PLSR)法建立猪肉含水率主模型,经PDS-LI算法对主模型进行传递后,主模型对茂佳山黑猪和零号土猪样品的预测决定系数R2p分别由传递前的0.263和0.507提高到0.832和0.848,预测均方根误差分别由传递前的1.151%和0.857%降低到0.470%和0.440%,剩余预测偏差(residual prediction deviation,RPD)分别由传递前的1.000和1.214提高到2.447和2.364。结果表明,PDS-LI传递算法能够实现杜长大对茂佳山黑猪和零号土猪样品的模型传递。研究结果为提高猪肉含水率模型适配性问题提供参考。展开更多
文摘针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with linear interpolation,PDS-LI)的传递算法。以杜长大、茂佳山黑猪和零号土猪3个品种为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘回归(partial least squares regression,PLSR)法建立猪肉含水率主模型,经PDS-LI算法对主模型进行传递后,主模型对茂佳山黑猪和零号土猪样品的预测决定系数R2p分别由传递前的0.263和0.507提高到0.832和0.848,预测均方根误差分别由传递前的1.151%和0.857%降低到0.470%和0.440%,剩余预测偏差(residual prediction deviation,RPD)分别由传递前的1.000和1.214提高到2.447和2.364。结果表明,PDS-LI传递算法能够实现杜长大对茂佳山黑猪和零号土猪样品的模型传递。研究结果为提高猪肉含水率模型适配性问题提供参考。