Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum...Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum(Al)matrix composites were fabricated by flaky powder metallurgy. Tensile tests of pure Al matrix and graphene/Al composites with bioinspired layered structures are conducted.By means of an independently developed Python-based structural modeling program, three-dimensional microscopic structural models of graphene/Al composites can be established, in which the size, shape, orientation, location and content of graphene can be reconstructed in line with the actual graphene/Al composite structures. Elastoplastic mechanical properties, damaged materials behaviors, grapheneAl interfacial behaviors and reasonable boundary conditions are introduced and applied to perform the simulations. Based on the experimental and numerical tensile behaviors of graphene/Al composites, the effects of graphene morphology,graphene-Al interface, composite configuration and failure behavior within the tensile mechanical deformations of graphene/Al composites can be revealed and indicated, respectively.From the analysis above, a good understanding can be brought to light for the deformation mechanism of graphene/Al composites.展开更多
Microstructure and mechanical properties of a new high-strength Mg–6 Zn–4 Al–1 Sn alloy were investigated. Microstructure of the as-cast Mg alloy exhibited partially divorced characteristics. The dendritic structur...Microstructure and mechanical properties of a new high-strength Mg–6 Zn–4 Al–1 Sn alloy were investigated. Microstructure of the as-cast Mg alloy exhibited partially divorced characteristics. The dendritic structure of the Mg–6 Zn–4 Al alloy was significantly refined with the addition of 1%(in weight) Sn, but Mg2 Sn phases were not formed. In addition, an icosahedral quasi-crystal phase was formed in the as-cast Mg–6 Zn–4 Al–1 Sn alloy. It was found that after the double-aging treatment through two different heat treatments on the Mg–6 Zn–4 Al–1 Sn alloy, the precipitates were finer and far more densely dispersed in the matrix compared with single-aged counterpart, resulting in a significant improvement in tensile strength with yield strength, ultimate tensile strength and elongation of 175 MPa, 335 MPa and 11%,respectively.展开更多
The effects of combined addition of 0.6 wt.% Nd and 0.4 wt.% Y on the microstructure and mechanical properties of Mg-7Zn-3Al alloy were investigated.The results indicated that the Nd and Y addition led to obvious dend...The effects of combined addition of 0.6 wt.% Nd and 0.4 wt.% Y on the microstructure and mechanical properties of Mg-7Zn-3Al alloy were investigated.The results indicated that the Nd and Y addition led to obvious dendrite coarsening.However,it could modify the morphology and distribution of-Mg 32(Al,Zn) 49 intermetallics.Moreover,Al 2 REZn 2 phase could be introduced into the alloy with the Nd and Y addition.With the effective second-phase strengthening,the ultimate tensile strength and elongation in as-cast state can be improved by the Nd and Y addition.After ageing treatment,the alloy with the Nd and Y addition exhibited better precipitation strengthening effects by forming finer MgZn 2 and Mg 32(Al,Zn) 49 precipitates into the-Mg matrix.As a result,the yield and ultimate strength of Mg-7Zn3Al-0.6Nd-0.4Y alloy could be increased to 182 and 300 MPa by peak-ageing treatment.展开更多
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amo...In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.展开更多
基金financial supports by the National Natural Science Foundation (51501111, 51131004)the Ministry of Science and Technology of China (2016YFE0130200)+1 种基金Science & Technology Committee of Shanghai (14DZ2261200, 1452 0710100 and 14JC14033 00)111 Project (B16032)
文摘Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum(Al)matrix composites were fabricated by flaky powder metallurgy. Tensile tests of pure Al matrix and graphene/Al composites with bioinspired layered structures are conducted.By means of an independently developed Python-based structural modeling program, three-dimensional microscopic structural models of graphene/Al composites can be established, in which the size, shape, orientation, location and content of graphene can be reconstructed in line with the actual graphene/Al composite structures. Elastoplastic mechanical properties, damaged materials behaviors, grapheneAl interfacial behaviors and reasonable boundary conditions are introduced and applied to perform the simulations. Based on the experimental and numerical tensile behaviors of graphene/Al composites, the effects of graphene morphology,graphene-Al interface, composite configuration and failure behavior within the tensile mechanical deformations of graphene/Al composites can be revealed and indicated, respectively.From the analysis above, a good understanding can be brought to light for the deformation mechanism of graphene/Al composites.
基金supported by the National Basic Research Program of China (No. 2013CB632205)the National Key Research and Development Program of China (No. 2016YFB301105)
文摘Microstructure and mechanical properties of a new high-strength Mg–6 Zn–4 Al–1 Sn alloy were investigated. Microstructure of the as-cast Mg alloy exhibited partially divorced characteristics. The dendritic structure of the Mg–6 Zn–4 Al alloy was significantly refined with the addition of 1%(in weight) Sn, but Mg2 Sn phases were not formed. In addition, an icosahedral quasi-crystal phase was formed in the as-cast Mg–6 Zn–4 Al–1 Sn alloy. It was found that after the double-aging treatment through two different heat treatments on the Mg–6 Zn–4 Al–1 Sn alloy, the precipitates were finer and far more densely dispersed in the matrix compared with single-aged counterpart, resulting in a significant improvement in tensile strength with yield strength, ultimate tensile strength and elongation of 175 MPa, 335 MPa and 11%,respectively.
文摘The effects of combined addition of 0.6 wt.% Nd and 0.4 wt.% Y on the microstructure and mechanical properties of Mg-7Zn-3Al alloy were investigated.The results indicated that the Nd and Y addition led to obvious dendrite coarsening.However,it could modify the morphology and distribution of-Mg 32(Al,Zn) 49 intermetallics.Moreover,Al 2 REZn 2 phase could be introduced into the alloy with the Nd and Y addition.With the effective second-phase strengthening,the ultimate tensile strength and elongation in as-cast state can be improved by the Nd and Y addition.After ageing treatment,the alloy with the Nd and Y addition exhibited better precipitation strengthening effects by forming finer MgZn 2 and Mg 32(Al,Zn) 49 precipitates into the-Mg matrix.As a result,the yield and ultimate strength of Mg-7Zn3Al-0.6Nd-0.4Y alloy could be increased to 182 and 300 MPa by peak-ageing treatment.
基金financially supported by the National Natural Science Foundation of China (Nos. 51201112, 51301120 and 51401144)the Natural Science Foundation of Shanxi (No. 2013021013-3)
文摘In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.