Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental res...Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental results showed that: (1) the ball milled Mo/Cu powder has lamellar structure, (2) the microstructures of the sintered Mo-Cu alloy were homogenous compound structures of adhesive phase Cu linking Mo grains, (3) Mo grains frequently strung or gathered in Cu phase, and (4) the full densities of Mo-Cu alloy was achieved through sintering and special densification process. As a result, the properties of the alloy are good enough to satisfy various requirements.展开更多
Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured...Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured. The microstructures of the sintered W-Cu alloy sampleswere observed by SEM (scanning electron microscope). The results show that spark plasma sinteringcan obviously lower the sintering temperature and increase the density of the alloy. This processcan also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders withhigh density and superior physical properties.展开更多
The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The...The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.展开更多
W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sinter...W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sintered alloy were observed. Properties such as density were measured. The results show that through mechanical activation, the particle size of the powder becomes finer to sub-micron or nanometer level, some copper was soluble in tungsten, and high density W-Cu alloys can be obtained by mechanically activated powder for its action to the activation sintering.展开更多
The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evalua...The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evaluate the kinetics parameters, Ag2O–graphite mixture of as-received and milled for 2 and 4 h samples were selected. Based on the results obtained by Vyazovkin method calculation, however, the difference between the maximum and minimum values of activation energy is less than 20%-30%of the average activation energy ((99.38±2.36) kJ/mol) and thermal decomposition of mechanically activated Ag2O for 2 h is a multi-step process. Moreover, the thermal decomposition of mechanically activated Ag2O–graphite powder activated for 4 h is a single-step process (the average activation energy=(93.68±2.26) kJ/mol). The kinetics modeling shows that the complexity of thermal decomposition of as-received Ag2O–graphite mixture is higher than that of the others. While, the autocatalytic tendency of as-received Ag2O–graphite mixture is lower than that of the others.展开更多
Powder of Ti-46at.%Al was synthesized through mechanical activation (MA) for different milling times, and the 16 h MAed powder was sintered by using a spark plasma sintering (SPS) process at different sintering te...Powder of Ti-46at.%Al was synthesized through mechanical activation (MA) for different milling times, and the 16 h MAed powder was sintered by using a spark plasma sintering (SPS) process at different sintering temperatures. The XRD profiles showed that the MAed Ti-46at,%Al powder for 12, 16, and 20 h contained initial α-Ti and Al phases, and that the SPSed TiAl alloys contained the gamma TiAl and α2-Ti3Al phases. The TEM showed two different types of regions in the 16 h MAed Ti-46at.%Al powder. One type consisted of only Al with a grain size about 80 nm, and the other type a mixture of Al and Ti with a grain size of 30 nm. According to the optical micrographs of MA-SPSed samples, the alloys sintered at higher temperatures showed a coarser microstructure. In the case of the 1473 Ksintering, typical duplex structures ((α2 +γ) lamella and γ phases) with interlamellar spacings of 50-400 nm and the grain size either less than 100 nm, or 1000 nm were observed.展开更多
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers...A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.展开更多
Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanical...Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanically activated. It has been found that in the case of activated sample, shorter induction periods appear, which permits growth of smaller crystals, while in the case of non-activated sample, long induction periods appear, characterized by the growth of larger crystals. DAEM approach has shown that decomposition processes of non-activated and mechanically activated samples can be described by contracting volume model with a linear combination of two different density distribution functions of apparent activation energies(Ea), and with first-order model, with a single symmetrical density distribution function of Ea, respectively. It was established that specific characteristics of particles not only affect the mechanism of decomposition processes, but also have the significant impact on thermodynamic properties.展开更多
Tungsten alloys were prepared with mechanically activated powder added microelement cobalt in order to improve the process and properties of alloys. Properties of alloys such as density, hardness and bending strength ...Tungsten alloys were prepared with mechanically activated powder added microelement cobalt in order to improve the process and properties of alloys. Properties of alloys such as density, hardness and bending strength were measured. The results show that through mechanical activation, cobalt can accelerate the sintering process of these alloys By the combination of mechanical activation and adding microelement cobalt, tungsten alloys with higher density and better properties can be obtained.展开更多
The mechanical activation of tetrahedrite Cu_(12)Sb_(4)S_(13) was carried out in a planetary mill. The changes in the surface and bulk properties produced in mineral by mechanical activation were detected by infrared,...The mechanical activation of tetrahedrite Cu_(12)Sb_(4)S_(13) was carried out in a planetary mill. The changes in the surface and bulk properties produced in mineral by mechanical activation were detected by infrared, photoelectron and Mossbauer spectroscopy. The rate and selectivity of tetrahedrite acid leaching depends on conditions of mechanical activation.展开更多
The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractiona...The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractionand SEM were chosen to analyze the materials variation before and after activation and sintering, and hot press ofFe-Al powder was inveshgated to compare mechanical activation with sintering. The results show that combiningmechanical activation with reaction sintering can complete the transformation from pure Fe and Al powder to intermetallics. It is difficult to do the transformation by either mechanical activation or hot press.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ...The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.展开更多
Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The ...Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.展开更多
In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures ...In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.展开更多
The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leach...The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.展开更多
On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the c...On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.展开更多
The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperatu...The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from le- pidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and re- sponse-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphi- zation and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malach...Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG.However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared(FT-IR) spectra of activated malachite, the bands associated with –OH, CO_3^(2-)and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO_2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite.Furthermore, the leaching behavior of copper ore was greatly improved by MA.展开更多
文摘Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental results showed that: (1) the ball milled Mo/Cu powder has lamellar structure, (2) the microstructures of the sintered Mo-Cu alloy were homogenous compound structures of adhesive phase Cu linking Mo grains, (3) Mo grains frequently strung or gathered in Cu phase, and (4) the full densities of Mo-Cu alloy was achieved through sintering and special densification process. As a result, the properties of the alloy are good enough to satisfy various requirements.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50174007)
文摘Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured. The microstructures of the sintered W-Cu alloy sampleswere observed by SEM (scanning electron microscope). The results show that spark plasma sinteringcan obviously lower the sintering temperature and increase the density of the alloy. This processcan also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders withhigh density and superior physical properties.
基金the Special Fund for the National Natural Science Foundation of China(U1608254)the National Key R&D Program of China(2018YFC1902002).
文摘The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.
文摘W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sintered alloy were observed. Properties such as density were measured. The results show that through mechanical activation, the particle size of the powder becomes finer to sub-micron or nanometer level, some copper was soluble in tungsten, and high density W-Cu alloys can be obtained by mechanically activated powder for its action to the activation sintering.
文摘The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evaluate the kinetics parameters, Ag2O–graphite mixture of as-received and milled for 2 and 4 h samples were selected. Based on the results obtained by Vyazovkin method calculation, however, the difference between the maximum and minimum values of activation energy is less than 20%-30%of the average activation energy ((99.38±2.36) kJ/mol) and thermal decomposition of mechanically activated Ag2O for 2 h is a multi-step process. Moreover, the thermal decomposition of mechanically activated Ag2O–graphite powder activated for 4 h is a single-step process (the average activation energy=(93.68±2.26) kJ/mol). The kinetics modeling shows that the complexity of thermal decomposition of as-received Ag2O–graphite mixture is higher than that of the others. While, the autocatalytic tendency of as-received Ag2O–graphite mixture is lower than that of the others.
基金the High Technology Development Program of Hubei Province, China (No. 2001AA101B02).
文摘Powder of Ti-46at.%Al was synthesized through mechanical activation (MA) for different milling times, and the 16 h MAed powder was sintered by using a spark plasma sintering (SPS) process at different sintering temperatures. The XRD profiles showed that the MAed Ti-46at,%Al powder for 12, 16, and 20 h contained initial α-Ti and Al phases, and that the SPSed TiAl alloys contained the gamma TiAl and α2-Ti3Al phases. The TEM showed two different types of regions in the 16 h MAed Ti-46at.%Al powder. One type consisted of only Al with a grain size about 80 nm, and the other type a mixture of Al and Ti with a grain size of 30 nm. According to the optical micrographs of MA-SPSed samples, the alloys sintered at higher temperatures showed a coarser microstructure. In the case of the 1473 Ksintering, typical duplex structures ((α2 +γ) lamella and γ phases) with interlamellar spacings of 50-400 nm and the grain size either less than 100 nm, or 1000 nm were observed.
基金Funded by the National Natural Science Foundation of China(51572208)the 111 Project(B13035)+1 种基金the National Natural Science Foundation of Hubei Province(2014CFB257 and 2014CFB258)the Fundamental Research Funds for the Central Universities(WUT:2015-III-059)
文摘A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.
基金partially supported by the Ministry of Science and Environmental Protection of Serbia under the Project 172015
文摘Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanically activated. It has been found that in the case of activated sample, shorter induction periods appear, which permits growth of smaller crystals, while in the case of non-activated sample, long induction periods appear, characterized by the growth of larger crystals. DAEM approach has shown that decomposition processes of non-activated and mechanically activated samples can be described by contracting volume model with a linear combination of two different density distribution functions of apparent activation energies(Ea), and with first-order model, with a single symmetrical density distribution function of Ea, respectively. It was established that specific characteristics of particles not only affect the mechanism of decomposition processes, but also have the significant impact on thermodynamic properties.
文摘Tungsten alloys were prepared with mechanically activated powder added microelement cobalt in order to improve the process and properties of alloys. Properties of alloys such as density, hardness and bending strength were measured. The results show that through mechanical activation, cobalt can accelerate the sintering process of these alloys By the combination of mechanical activation and adding microelement cobalt, tungsten alloys with higher density and better properties can be obtained.
文摘The mechanical activation of tetrahedrite Cu_(12)Sb_(4)S_(13) was carried out in a planetary mill. The changes in the surface and bulk properties produced in mineral by mechanical activation were detected by infrared, photoelectron and Mossbauer spectroscopy. The rate and selectivity of tetrahedrite acid leaching depends on conditions of mechanical activation.
文摘The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractionand SEM were chosen to analyze the materials variation before and after activation and sintering, and hot press ofFe-Al powder was inveshgated to compare mechanical activation with sintering. The results show that combiningmechanical activation with reaction sintering can complete the transformation from pure Fe and Al powder to intermetallics. It is difficult to do the transformation by either mechanical activation or hot press.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金Project(2009FJ3082)supported by Research Project of Science and Technology in Hunan Province,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.
基金Project(51064002)supported by the National Natural Science Foundation of ChinaProject(0728238)supported by the Natural Science Foundation of Guangxi Province,China
文摘Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.
基金Project(2012J05088) supported by the Natural Science Foundation of Fujian Province,ChinaProject(022409) supported by the School Talent Foundation of Fuzhou University,China
文摘In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.
基金supported by Iran Mineral Processing Research Center (IMPRC)the IMPRC for the financial support of this work
文摘The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.
基金Funded by the Key Laboratory Foundation of Ecological-Environment Materials (Yancheng Institute of Technology) of Jiangsu Province (XKY2006020)the Natural Science Foundation of Jiangsu Provincial Education Depart-ment(07KJB430123)
文摘On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.
基金the doctorate grant ref.9244/13-1 supplied by CAPES Foundation,Ministry of Education of Brazil
文摘The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from le- pidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and re- sponse-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphi- zation and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.
基金financially supported by the Special Funds for the National Natural Science Foundation of China(No.U1608254)the National Key R&D Program of China(No.2018YFC1902002)
文摘Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG.However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared(FT-IR) spectra of activated malachite, the bands associated with –OH, CO_3^(2-)and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO_2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite.Furthermore, the leaching behavior of copper ore was greatly improved by MA.