期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Microglial Depletion does not Afect the Laterality of Mechanical Allodynia in Mice
1
作者 Quan Ma Dongmei Su +10 位作者 Jiantao Huo Guangjuan Yin Dong Dong Kaifang Duan Hong Cheng Huiling Xu Jiao Ma Dong Liu Bin Mou Jiyun Peng Longzhen Cheng 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第8期1229-1245,共17页
Mechanical allodynia(MA),including punctate and dynamic forms,is a common and debilitating symptom suffered by millions of chronic pain patients.Some peripheral injuries result in the development of bilateral MA,while... Mechanical allodynia(MA),including punctate and dynamic forms,is a common and debilitating symptom suffered by millions of chronic pain patients.Some peripheral injuries result in the development of bilateral MA,while most injuries usually led to unilateral MA.To date,the control of such laterality remains poorly understood.Here,to study the role of microglia in the control of MA laterality,we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice.Surprisingly,the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA.Moreover,in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons.Consistent with behavioral results,microglial depletion did not prevent the opening of bilateral gates for Aβpathways in the superficial dorsal horn.This study challenges the role of microglia in the control of MA laterality in mice.Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific. 展开更多
关键词 MICROGLIA mechanical allodynia LATERALITY Spinal dorsal horn Dynamic allodynia Punctate allodynia
原文传递
Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance
2
作者 Feng Du Guangjuan Yin +6 位作者 Lei Han Xi Liu Dong Dong Kaifang Duan Jiantao Huo Yanyan Sun Longzhen Cheng 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第8期1210-1228,共19页
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity(OIH)and analgesic tolerance.Among the different forms of OIH and tolerance,the opioid receptors and cell types mediating... The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity(OIH)and analgesic tolerance.Among the different forms of OIH and tolerance,the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved.Here we demonstrated that the loss of peripheralμ-opioid receptors(MORs)or MOR-expressing neurons attenuated thermal tolerance,but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance.To confirm this result,we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons.Consistent with the behavioral results,peripheral MOR loss did not prevent the opening of Aβmechanical allodynia pathways in the spinal dorsal horn.Therefore,the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance.Future studies should focus more on central mechanisms. 展开更多
关键词 μ-opioid receptor MORPHINE mechanical allodynia Punctate allodynia Dynamic allodynia OIH TOLERANCE Aβ-fber
原文传递
Involvement of NF-κB and the CX3CR1 Signaling Network in Mechanical Allodynia Induced by Tetanic Sciatic Stimulation 被引量:6
3
作者 Zhe-Chen Wang Li-Hong Li +3 位作者 Chao Bian Liu Yang Ning Lv Yu-Qiu Zhang 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第1期64-73,共10页
Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1- CX3CR1 signaling is an important pathway in neuron... Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1- CX3CR1 signaling is an important pathway in neuronal- microglial activation. Nuclear factor nB (NF-KB) is a key signal transduction molecule that regulates neuroinflamma- tion and neuropathic pain. Here, we set out to determine whether and how NF-~B and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-nB (pNF-nB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammo- nium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down- regulated the expression of CX3CL1-CX3CR1 signaling,and conversely the CX3CRl-neutralizing antibody also down-regulated pNF-rd3. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR 1-neutralizing antibodies in treating pathological pain. 展开更多
关键词 CX3CR1 mechanical allodynia NF-ΚB Tetanic sciatic stimulation MICROGLIA Spinal dorsal horn
原文传递
Puerarin ameliorates allodynia and hyperalgesia in rats with peripheral nerve injury 被引量:13
4
作者 Heng-Tao Xie Zhong-Yuan Xia +2 位作者 Xia Pan Bo Zhao Zhi-Gang Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1263-1268,共6页
Puerarin is a major active ingredient of the traditional Chinese plant medicine,Radix Puerariae,and commonly used in the treatment of myocardial and cerebral ischemia.However,the effects of puerarin on neuropathic pai... Puerarin is a major active ingredient of the traditional Chinese plant medicine,Radix Puerariae,and commonly used in the treatment of myocardial and cerebral ischemia.However,the effects of puerarin on neuropathic pain are still unclear.In this study,a neuropathic pain animal model was created by partial sciatic nerve ligation.Puerarin(30 or 60 mg/kg) was intraperitoneally injected once a day for 7 days.Mechanical allodynia and thermal hyperalgesia were examined at 1 day after model establishment.Mechanical threshold and paw withdrawal latency markedly increased in a dose-dependent manner in puerarin-treated rats,especially at 7 days after model establishment.At 7 days after model establishment,quantitative real-time reverse transcriptase-polymerase chain reaction results showed that puerarin administration reversed m RNA expression of transient receptor potential vanilloid 1(Trpv1) and transient receptor potential ankyrin 1(Trpa1) in a dose-dependent manner in dorsal root ganglion neurons after peripheral nerve injury.These results suggest that puerarin dose-dependently ameliorates neuropathic pain by suppressing Trpv1 and Trpa1 up-regulation in dorsal root ganglion of neuropathic pain rats. 展开更多
关键词 nerve regeneration puerarin Radix Puerariae traditional Chinese medicine Trpv1 Trpa1 dorsal root ganglion peripheral nerve injury neuropathic pain mechanical allodynia thermal hyperalgesia neural regeneration
下载PDF
Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information
5
作者 Yue Wang Naizheng Liu +5 位作者 Longyu Ma Lupeng Yue Shuang Cui Feng-Yu Liu Ming Yi You Wan 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第2期201-217,共17页
As a main structure of the limbic system,the hippocampus plays a critical role in pain perception and chronicity.The ventral hippocampal CA1(vCA1)is closely associated with negative emotions such as anxiety,stress,and... As a main structure of the limbic system,the hippocampus plays a critical role in pain perception and chronicity.The ventral hippocampal CA1(vCA1)is closely associated with negative emotions such as anxiety,stress,and fear,yet how vCA1 neurons encode nociceptive information remains unclear.Using in vivo electrophysiological recording,we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats.Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions:the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli,whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties.Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors.Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats,whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain.These results provide direct evidence for the representations of nociceptive information in vCA1. 展开更多
关键词 Ventral hippocampal CA1 NOCICEPTION mechanical allodynia In vivo recording Neural coding
原文传递
Peripheral BDNF Regulates Somatosensory–Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain
6
作者 Hang Xian Huan Guo +7 位作者 Yuan-Ying Liu Jian-Lei Zhang Wen-Chao Hu Ming-Jun Yu Rui Zhao Rou-Gang Xie Hang Zhang Rui Cong 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第12期1789-1806,共18页
Brachial plexus avulsion(BPA)is a combined injury involving the central and peripheral nervous systems.Patients with BPA often experience severe neuropathic pain(NP)in the affected limb.NP is insensitive to the existi... Brachial plexus avulsion(BPA)is a combined injury involving the central and peripheral nervous systems.Patients with BPA often experience severe neuropathic pain(NP)in the affected limb.NP is insensitive to the existing treatments,which makes it a challenge to researchers and clinicians.Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction,which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP.However,the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear.In this study,through using a novel BPA C7 root avulsion mouse model,we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased,and the markers of sympathetic nervous system activity includingα1 andα2 adrenergic receptors(α1-AR andα2-AR)also increased after BPA.The phenomenon of superexcitation of the sympathetic nervous system,including hypothermia and edema of the affected extremity,was also observed in BPA mice by using CatWalk gait analysis,an infrared thermometer,and an edema evaluation.Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice.Further,intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice.In another branch experiment,we also found the elevated expression of BDNF,TrκB,TH,α1-AR,andα2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry.Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP.This study also opens a novel analgesic target(BDNF)in the treatment of this pain with fewer complications,which has great potential for clinical transformation. 展开更多
关键词 Brachial plexus avulsion Neuropathic pain Sympathetic nervous system Brain-derived neurotrophic factor Peripheral sensitization mechanical allodynia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部