Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)...Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.展开更多
The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the ...The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the wB97XD/6-311++G** method. Intrinsic reaction coordinate (IRC) analysis has been carried out for the reaction channels. Thermochemistry data have been obtained by utilizing the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for reaction channels analysis. Two channels were obtained, which correspond to P(1) and P(2). The rate constants for the two channels over a wide temperature range of 200-2000 K were also obtained. The results show that the barriers of P(1) and P(2) reaction channels are 50.36 and 50.34 kJ/mol, respectively, predicting that it exists two competitive channels. The calculated rate constant is in good agreement with the experiment value. Additionally, the results also show that the rate constants also increase from 1.85x10^-16 to 2.16x 10^12 cm3.moleculel.s-1 from 200 to 2000 K展开更多
The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response a...The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.展开更多
In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,the...In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.展开更多
The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet saf...The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadwavs in Tertiary deed soft rock.展开更多
The reaction behavior of forming the hetero-nuclear β-type chelates of rare earth ions (RE 3+) with p-sulphoaminobromophosphonazo(BPA-pSN) in ClCH_2COOH-CH_3COONa buffer solutions were studied by a spectrophotometri...The reaction behavior of forming the hetero-nuclear β-type chelates of rare earth ions (RE 3+) with p-sulphoaminobromophosphonazo(BPA-pSN) in ClCH_2COOH-CH_3COONa buffer solutions were studied by a spectrophotometric method. The interaction of RE 3+ with BPA-pSN, which can forms hetero-nuclear β-type chelates having composition ratio of RE_1 (light rare earth):BPA-pSN:RE_2(heavy rare earth ion)=1∶3∶1, is a first-order reaction. Meanwhile, BPA-pSN can only forms homo-nuclear β-type chelates with heavy rare earth ions, having a composition ratio of RE∶BPA-pSN=1∶2 and being a second-order reaction. The rate constants of forming homo-and hetero-nuclear β-type chelates were obtained and the mechanism of forming hetero-nuclear β-type chelates was proposed.展开更多
This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the co...This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.展开更多
The reaction mechanism of CHF radical with HNCO was investigated by the B3LYP method of density functional theory (DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transitio...The reaction mechanism of CHF radical with HNCO was investigated by the B3LYP method of density functional theory (DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products were calculated at the B3LYP/6-311++G** level. In the temperature range of 100-2600 K, the statistical thermody- namics and Eyring transition state theory with Winger correction were used to study the thermodynamic and kinetic characters of the channel with low energy barrier. In addition, the analysis on the combining interaction between CHF radical and HNCO was performed by atom-in-molecules theory (AIM) and natural bond orbitals (NBO) analysis. The calculation results indicated that the reaction of CHF radical with HNCO had ten channels, and the channel of NH direct extraction (CHF + HNCO→IM6→TS7→IM7→CHFNH + CO) in singlet state was the main channel with low potential energy and high equilibrium constant and reaction rate constant. CHFNH and CO were the main products.展开更多
Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated r...Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated reactions with complete series of nineteen fluorophenol congeners was studies using the density functional theory. At the MPWB1K,/6-31+G(d,p) level, the geometries and frequencies of reactants, transition states, and products were obtained, and the accurate energetic values were acquired at the MPWB 1K/6-311 +G(3df,2p) level. The rate constants were evaluated by the canonical variational transition-state theory with the small curvature tunneling contribution over a wide temperature range of 600-1000 K. The study shows that the intramolecular hydrogen-bond in the ortho-substituted FPs as well as the inductive effect of the electron-withdrawing fluorine and steric repulsion of multiple substitutions may ultimately be responsible for the relative strength of the O-H bonds in FPs. The results can be used for further studies on PFDD/Fs formation mechanism.展开更多
Herein,graphene oxide(GO)-encapsulated silica(SiO 2)hybrids(GO@SiO 2)were prepared via electrostatic self-assembly of the 3-aminopropyltriethoxysilane(APS)-modified SiO_(2) and GO.The as-prepared GO@SiO 2 was introduc...Herein,graphene oxide(GO)-encapsulated silica(SiO 2)hybrids(GO@SiO 2)were prepared via electrostatic self-assembly of the 3-aminopropyltriethoxysilane(APS)-modified SiO_(2) and GO.The as-prepared GO@SiO 2 was introduced into polydimethyl-siloxane(PDMS)elastomer to simultaneously increase the dielectric constant(k)and mechanical properties of PDMS.Then,the in situ thermal reduction of GO@SiO_(2)/PDMS composites was conducted at 180℃ for 2 h to increase the interfacial polariz-ability of GO@SiO_(2).As a result,the values of k at 1000 Hz are largely improved from 3.2 for PDMS to 13.3 for the reduced GO@SiO_(2)(RGO@SiO_(2))/PDMS elastomer.Meanwhile,the dielectric loss of the composites remains low(<0.2 at 1000 Hz).More importantly,the actuated strain at low electric field(5 kV/mm)obviously increases from 0.3%for pure PDMS to 2.59%for the composites with 60 phr of RGO@SiO_(2),an eightfold increase in the actuated strain.In addition,both the tensile strength and elastic modulus are obviously improved by adding 60 phr of RGO@SiO_(2),indicating a good reinforcing effect of RGO@SiO_(2) on PDMS.Our goal is to develop a simple and effective way to improve the actuated performance and mechanical strength of the PDMS dielectric elastomer for its wider application.展开更多
The ozonolysis of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an efficient degradation way in the atmosphere. The ozonolysis process and possible reactions path of Criegee Intermediates with NO and H2O ar...The ozonolysis of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an efficient degradation way in the atmosphere. The ozonolysis process and possible reactions path of Criegee Intermediates with NO and H2O are introduced in detail at the method of MPWB1K/6-31+G(d,p)//MPWB1K/6- 311+G(3df,2p) level. In ozonolysis, H2O is an important source of OH radical formation and initiated the subsequent degradation reaction. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was applied to calculate rate constants with the temperature ranging from 200 to 600 K. The rate constant of reaction between 2,3,7,8-TCDD and 03 is 4.80 × 10^-20 cm3/(mole.sec) at 298 K and 760 Tort. The atmospheric lifetime of the reaction species was estimated according to rate constants, which is helpful for the atmospheric model study on the degradation and risk assessment of dioxin.展开更多
In this article, the NO3 radical-initiated atmospheric oxidation degradation of DDT was theoretically investigated using molecular orbital theory calculations. All the calculations of intermediates, transition states ...In this article, the NO3 radical-initiated atmospheric oxidation degradation of DDT was theoretically investigated using molecular orbital theory calculations. All the calculations of intermediates, transition states and products were performed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6- 31+G(d,p) level of theory. Several energetically favorable reaction pathways were revealed. The formation mechanisms of secondary pollutants were presented and discussed. The rate constants were deduced over the temperature range of 273-333 K using canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) method. Our study shows that H abstraction from the alkyl group and NO3 addition to the Ca atom of the benzene ring are the dominant reaction pathways. The rate-temperature formula of the overall rate constants is k(T)(DDT+NO3) = (7.21 ~ 10-15)exp(-153.81/T) cm3/(mol.sec) over the possible atmospheric temperature range of 273-333 K. The atmospheric lifetime of DDT determined by NO3 radical is about 52.5 days, which indicates that it can be degraded in the gas phase within several months.展开更多
基金Supported by the Innovative Talent Funds for Project 985 under Grant No WLYJSBJRCTD201102the Fundamental Research Funds for the Central Universities under Grant No CQDXWL-2013-014+1 种基金the Natural Science Foundation of Chongqing under Grant No CSTC2006BB5240the Program for New Century Excellent Talents in Universities of China under Grant No NCET-07-0903
文摘Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.
基金financed by the Natural Science Foundation of Shaanxi Province(2014JM2046,2013JQ2027)the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City Government(CXY1443WL03,CXY1352WL19 and CXY1352WL20)+1 种基金National Science Foundation of China(21303135)the Industrial research project of Science and Technology Department of Shaanxi Province(2013K09-25)
文摘The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the wB97XD/6-311++G** method. Intrinsic reaction coordinate (IRC) analysis has been carried out for the reaction channels. Thermochemistry data have been obtained by utilizing the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for reaction channels analysis. Two channels were obtained, which correspond to P(1) and P(2). The rate constants for the two channels over a wide temperature range of 200-2000 K were also obtained. The results show that the barriers of P(1) and P(2) reaction channels are 50.36 and 50.34 kJ/mol, respectively, predicting that it exists two competitive channels. The calculated rate constant is in good agreement with the experiment value. Additionally, the results also show that the rate constants also increase from 1.85x10^-16 to 2.16x 10^12 cm3.moleculel.s-1 from 200 to 2000 K
文摘The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.
基金support by the National Natural Science Foundation of China (Nos. 51374106 and 51434006)
文摘In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.
基金supported by the Program of the National Natural Science Foundation of China (No. 51374214)National Science Foundation of China (No. 41040027)Fundamental Research Funds for the Central Universities (No. 2009QL06)
文摘The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadwavs in Tertiary deed soft rock.
文摘The reaction behavior of forming the hetero-nuclear β-type chelates of rare earth ions (RE 3+) with p-sulphoaminobromophosphonazo(BPA-pSN) in ClCH_2COOH-CH_3COONa buffer solutions were studied by a spectrophotometric method. The interaction of RE 3+ with BPA-pSN, which can forms hetero-nuclear β-type chelates having composition ratio of RE_1 (light rare earth):BPA-pSN:RE_2(heavy rare earth ion)=1∶3∶1, is a first-order reaction. Meanwhile, BPA-pSN can only forms homo-nuclear β-type chelates with heavy rare earth ions, having a composition ratio of RE∶BPA-pSN=1∶2 and being a second-order reaction. The rate constants of forming homo-and hetero-nuclear β-type chelates were obtained and the mechanism of forming hetero-nuclear β-type chelates was proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51574016 and 51604018)
文摘This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.
基金supported by the Natural Science Foundation of Gansu Province(No.1208RJZM289)
文摘The reaction mechanism of CHF radical with HNCO was investigated by the B3LYP method of density functional theory (DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products were calculated at the B3LYP/6-311++G** level. In the temperature range of 100-2600 K, the statistical thermody- namics and Eyring transition state theory with Winger correction were used to study the thermodynamic and kinetic characters of the channel with low energy barrier. In addition, the analysis on the combining interaction between CHF radical and HNCO was performed by atom-in-molecules theory (AIM) and natural bond orbitals (NBO) analysis. The calculation results indicated that the reaction of CHF radical with HNCO had ten channels, and the channel of NH direct extraction (CHF + HNCO→IM6→TS7→IM7→CHFNH + CO) in singlet state was the main channel with low potential energy and high equilibrium constant and reaction rate constant. CHFNH and CO were the main products.
基金supported by the National Natural Science Foundation of China(No.21177077,21177076)the Independent Innovation Foundation of Shandong University(No.2012JC030)
文摘Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated reactions with complete series of nineteen fluorophenol congeners was studies using the density functional theory. At the MPWB1K,/6-31+G(d,p) level, the geometries and frequencies of reactants, transition states, and products were obtained, and the accurate energetic values were acquired at the MPWB 1K/6-311 +G(3df,2p) level. The rate constants were evaluated by the canonical variational transition-state theory with the small curvature tunneling contribution over a wide temperature range of 600-1000 K. The study shows that the intramolecular hydrogen-bond in the ortho-substituted FPs as well as the inductive effect of the electron-withdrawing fluorine and steric repulsion of multiple substitutions may ultimately be responsible for the relative strength of the O-H bonds in FPs. The results can be used for further studies on PFDD/Fs formation mechanism.
基金We would like to express our sincere thanks to the National Natural Science Foundation of China[grant number 51173007],[grant number 51103090],[grant number 51221002]for financial support.
文摘Herein,graphene oxide(GO)-encapsulated silica(SiO 2)hybrids(GO@SiO 2)were prepared via electrostatic self-assembly of the 3-aminopropyltriethoxysilane(APS)-modified SiO_(2) and GO.The as-prepared GO@SiO 2 was introduced into polydimethyl-siloxane(PDMS)elastomer to simultaneously increase the dielectric constant(k)and mechanical properties of PDMS.Then,the in situ thermal reduction of GO@SiO_(2)/PDMS composites was conducted at 180℃ for 2 h to increase the interfacial polariz-ability of GO@SiO_(2).As a result,the values of k at 1000 Hz are largely improved from 3.2 for PDMS to 13.3 for the reduced GO@SiO_(2)(RGO@SiO_(2))/PDMS elastomer.Meanwhile,the dielectric loss of the composites remains low(<0.2 at 1000 Hz).More importantly,the actuated strain at low electric field(5 kV/mm)obviously increases from 0.3%for pure PDMS to 2.59%for the composites with 60 phr of RGO@SiO_(2),an eightfold increase in the actuated strain.In addition,both the tensile strength and elastic modulus are obviously improved by adding 60 phr of RGO@SiO_(2),indicating a good reinforcing effect of RGO@SiO_(2) on PDMS.Our goal is to develop a simple and effective way to improve the actuated performance and mechanical strength of the PDMS dielectric elastomer for its wider application.
基金supported by National Natural Science Foundation of China(No.21277082,21177076,71201093)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2012HZ009,BS2012SF012)+2 种基金the Hi-Tech Research and Development Program(863)of China(No.2012AA06A301)the New Century Excellent Talents in University(NCET-13-0349)the Open Project from special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.13K05ESPCP)
文摘The ozonolysis of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an efficient degradation way in the atmosphere. The ozonolysis process and possible reactions path of Criegee Intermediates with NO and H2O are introduced in detail at the method of MPWB1K/6-31+G(d,p)//MPWB1K/6- 311+G(3df,2p) level. In ozonolysis, H2O is an important source of OH radical formation and initiated the subsequent degradation reaction. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was applied to calculate rate constants with the temperature ranging from 200 to 600 K. The rate constant of reaction between 2,3,7,8-TCDD and 03 is 4.80 × 10^-20 cm3/(mole.sec) at 298 K and 760 Tort. The atmospheric lifetime of the reaction species was estimated according to rate constants, which is helpful for the atmospheric model study on the degradation and risk assessment of dioxin.
基金supported by the National Natural Science Foundation of China(No.21337001,21377073)the Independent Innovation Foundation of Shandong University(IIFSDU)(No.2012JC030)
文摘In this article, the NO3 radical-initiated atmospheric oxidation degradation of DDT was theoretically investigated using molecular orbital theory calculations. All the calculations of intermediates, transition states and products were performed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6- 31+G(d,p) level of theory. Several energetically favorable reaction pathways were revealed. The formation mechanisms of secondary pollutants were presented and discussed. The rate constants were deduced over the temperature range of 273-333 K using canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) method. Our study shows that H abstraction from the alkyl group and NO3 addition to the Ca atom of the benzene ring are the dominant reaction pathways. The rate-temperature formula of the overall rate constants is k(T)(DDT+NO3) = (7.21 ~ 10-15)exp(-153.81/T) cm3/(mol.sec) over the possible atmospheric temperature range of 273-333 K. The atmospheric lifetime of DDT determined by NO3 radical is about 52.5 days, which indicates that it can be degraded in the gas phase within several months.