期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Electrochemically Assisted Mechanically Controllable Break Junction Approach for Single Molecule Junction Conductance Measurements 被引量:5
1
作者 Yang Yang Zhaobin Chen +4 位作者 Junyang Liu Miao Lu Dezhi Yang Fangzu Yang Zhongqun Tian 《Nano Research》 SCIE EI CAS CSCD 2011年第12期1199-1207,共9页
We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by e... We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au- molecule-Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-l,4-dithiol (BDT) and 4,4'-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient. 展开更多
关键词 Single molecule junction conductance electrochemical deposition mechanically controlled break junction (MCBJ) benzene-l 4-dithiol BIPYRIDINE
原文传递
Unexpected current-voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted-MCBJ 被引量:3
2
作者 Yang Yang Junyang Liu +7 位作者 Shi Feng Huimin Wen Jinghua Tian Jueting Zheng Bernd Schollhorn Christian Amatore Zhongning Chen Zhongqun Tian 《Nano Research》 SCIE EI CAS CSCD 2016年第2期560-570,共11页
In this article, we report on the characterization of various molecular junctions' current-voltage characteristics (Ⅰ-Ⅴ curves) evolution under mechanical modulations, by employing a novel electrochemically assis... In this article, we report on the characterization of various molecular junctions' current-voltage characteristics (Ⅰ-Ⅴ curves) evolution under mechanical modulations, by employing a novel electrochemically assisted-mechanically controllable break junction (EC-MCBJ) method. For 1,4-benzenedithiol, the Ⅰ-Ⅴ curves measured at constant electrode pair separation show excellent reproducibility, indicating the feasibility of our EC-MCBJ method for fabricating molecular junctions. For ferrocene-bisvinylphenylmethyl dithiol (Fc-VPM), an anomalous type of Ⅰ-Ⅴ curve was observed by the particular control over the stepping motor. This phenomenon is rationalized assuming a model of atomic contact evolution with the presence of molecular junctions. To test this hypothesized model, a molecule with a longer length, 1,3-butadiyne-linked dinuclear ruthenium(H) complex (Ru-1), was implemented, and the Ⅰ-Ⅴ curve evolution was investigated under similar circumstances. Compared with Fc-VPM, the observed Ⅰ-Ⅴ curves show close analogy and minor differences, and both of them fit the hypothesized model well. 展开更多
关键词 molecular junction electrochemical deposition mechanically controllable break junction (MCBJ) ruthenium complex ferrocenyl molecular wire
原文传递
Optical Trapping of a Single Molecule of Length Sub-1 nm in Solution 被引量:1
3
作者 Biao-Feng Zeng Ran Deng +11 位作者 Yu-Ling Zou Chun-An Huo Jing-Yu Wang Wei-Ming Yang Qing-Man Liang Sheng-Jie Qiu Anni Feng Jia Shi Wenjing Hong Zhilin Yang Zhong-Qun Tian Yang Yang 《CCS Chemistry》 CSCD 2023年第4期830-840,共11页
Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have b... Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have been considered promising,the experimental strategies remain a challenge due to the Brownian motions and weak optical gradient forces with significantly reduced molecular polarizability.Herein,we address direct trapping and in situ sensing of single molecules with unprecedented size,down to∼5Åin solution,by employing an adjustable plasmonic optical nanogap and single-molecule conductance measurement.The theoretical simulations demonstrate that local fields with a high enhancement factor,over 103,were generated at such small nanogaps,resulting in optical forces as large as several piconewtons to suppress the Brownian motion and trap a molecule of length sub-1 nm.This work demonstrates a strategy for directly manipulating the small molecule units,promising a vast multitude of applications in chemical,biological,and materials sciences at the single-molecule level. 展开更多
关键词 plasmon-enhanced trapping molecular junction mechanically controllable break junction finite-element simulation method single-molecule conductance measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部