The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint s...The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.展开更多
Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdistur...Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.展开更多
The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. ...The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.展开更多
This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetr...This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.展开更多
The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism,...The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central l...We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.展开更多
In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionan...In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionand the criterion for this system are presented.A new conserved quantity and the Noether conserved quantity deducedfrom the Noether-form invariance are obtained.An example is given to illustrate the application of the results.展开更多
It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical...It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical control of quackgrass represents an interesting alternative to chemical means. The use of a "C" shaped mounted tine cultivator, a rotary cross-harrow, and an "S" shaped trailed tine cultivator (alone or in combination) to control quackgrass in grassland was investigated. The rate of quackgrass present in each experimental plot was determined before and after the treatments using a one square meter quadrant. Also, the time required for each passage as well as the fuel consumption were computed. Results revealed that the fuel consumption and the time required by the "C" and "S" shaped tine cultivators to transport and expose the rhizomes to the sun on the soil surface highly depend on the quality of tillage during the first stubble passage. Also, subsequent tillage with the "C" shaped tine cultivator after a first passage with a rotary cross-harrow resulted in less fuel consumption and passage time. On the other hand, stubble and subsequent soil tillage with only the "C" shaped tine cultivator is the least successful method.展开更多
This paper discusses the weak Noether symmetry for a nonholonomic controllable mechanical system of Chetaev type, and presents expressions of three kinds of conserved quantities obtained by using weak Noether symmetry...This paper discusses the weak Noether symmetry for a nonholonomic controllable mechanical system of Chetaev type, and presents expressions of three kinds of conserved quantities obtained by using weak Noether symmetry. Finally, the application of these new results is illustrated by an example.展开更多
A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the ...A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the determining equations of the special Mei symmetry, the constrained restriction equations, the additional restriction equations, and the definitions of the weak Mei symmetry and the strong Mei symmetry of the nonholonomic controllable mechanical system are given. The condition under which Mei symmetry is a Lie symmetry is obtained. The form of the Hojman conserved quantity of the corresponding holonomic mechanical system, the weak Hojman conserved quantity and the strong Hojman conserved quantity of the nonholonomie controllable mechanical system are obtained. An example is given to illustrate the application of the results.展开更多
With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical s...With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical system are given the relativistic Chaplygin equation. Nielsen equation and Appell equation .for variable mass controllable mechanical system in quasi-coordinates and generalized- coordinates are obtained, and the equations of motion of relativistic controllable mechanical system for holonomic system and constant mass system are diseussed展开更多
In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function w...In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.展开更多
Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear ...Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear about the phased characteristics of the coupling process with in situ stress,which induce coal damage and instability.Therefore,in the work based on the mining stress paths induced by typical outburst accidents,the gradual and sudden change of three-dimensional stress is taken as the background for the mechanical reconstruction of the disaster process.Then the true triaxial physical experiments are conducted on the damage and instability of coal containing gas under multiple stress paths.Finally,the response characterization between coal damage and gas pressure has been clarified,revealing the mechanism of action of gas pressure during the initial failure of coals.And the main controlling mechanism during the outburst process is elucidated in the coupling process of in situ stress with gas pressure.The results show that during the process of stress loading and unloading,the original gas pressure enters the processes of strengthening and weakening the action ability successively.And the strengthening effect continues to the period of large-scale destruction of coals.The mechanical process of gas pressure during the initial failure of coals can be divided into three stages:the enhancement of strengthening action ability,the decrease of strengthening action ability,and the weakening action ability.The entire process is implemented by changing the dominant action of in situ stress into the dominant action of gas pressure.The failure strength of coals is not only affected by its original mechanical strength,but also by the stress loading and unloading paths,showing a particularly significant effect.Three stages can be divided during outburst inoculation process.That is,firstly,the coals suffer from initial damage through the dominant action of in situ stress with synergy of gas pressure;secondly,the coals with spallation of structural division are generated through the dominant action of gas pressure with synergy of in situ stress,accompanied by further fragmentation;and finally,the fractured coals suffer from fragmentation and pulverization with the gas pressure action.Accordingly,the final broken coals are ejected out with the gas action,initiating an outburst.The research results can provide a new perspective for deepening the understanding of coal and gas outburst mechanism,laying a theoretical foundation for the innovation of outburst prevention and control technologies.展开更多
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and...Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.展开更多
Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform...Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.展开更多
Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
To realize high-precision Single-axial Rotating FOG-SINS,a low-power,low-cost,middle-precision rotating control mechanism design for single-axial rotating navigation system is put forward.Through theory analysis,desig...To realize high-precision Single-axial Rotating FOG-SINS,a low-power,low-cost,middle-precision rotating control mechanism design for single-axial rotating navigation system is put forward.Through theory analysis,design and experimental verification,the rotating control mechanism has good control precision and high reliability,which meets the demands for developing middle&high-precision FOG-SINS.展开更多
The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the ...The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.展开更多
Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklima...Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.展开更多
文摘The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AQ011 Science Foundation of Binzhou University under Grant No.BZXYG0903
文摘Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.
基金Supported by the Key Disciplines' Building Foundation of Henan Institute of Educationthe Natural Science Foundation of Education Bureau of Henan Province of China under Grant No. 2009A14003
文摘The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results.
文摘This paper studies the perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints. It gives the exact invariants introduced by the Lie symmetries of the nonholonomic controllable mechanical system with non-Chetaev type constraints without perturbation. Based on the definition of high-order adiabatic invarlants of mechanical system, the perturbation of Lie symmetries for nonholonomic controllable mechanical system with non-Chetaev type constraints with the action of small disturbances is investigated, and a new type of adiabatic invariant of system are obtained. In the end of this paper, an example is given to illustrate the application of the results.
文摘The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62075245)Xinjiang Uygur Autonomous Region University Scientific Research Foundation (Grant No. XJEDU2018I021)。
文摘We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.
基金the Graduate Students' Innovative Foundation of Chinanivcrsity of Petroleum(East China)under Grant No.S2006-31
文摘In this paper,we study the Noether-form invariance of nonholonomic mechanical controllable systems inphase space.Equations of motion of the controllable mechanical systems in phase space are presented.The definitionand the criterion for this system are presented.A new conserved quantity and the Noether conserved quantity deducedfrom the Noether-form invariance are obtained.An example is given to illustrate the application of the results.
文摘It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical control of quackgrass represents an interesting alternative to chemical means. The use of a "C" shaped mounted tine cultivator, a rotary cross-harrow, and an "S" shaped trailed tine cultivator (alone or in combination) to control quackgrass in grassland was investigated. The rate of quackgrass present in each experimental plot was determined before and after the treatments using a one square meter quadrant. Also, the time required for each passage as well as the fuel consumption were computed. Results revealed that the fuel consumption and the time required by the "C" and "S" shaped tine cultivators to transport and expose the rhizomes to the sun on the soil surface highly depend on the quality of tillage during the first stubble passage. Also, subsequent tillage with the "C" shaped tine cultivator after a first passage with a rotary cross-harrow resulted in less fuel consumption and passage time. On the other hand, stubble and subsequent soil tillage with only the "C" shaped tine cultivator is the least successful method.
基金supported by the Key Disciplines’ Building Foundation of Henan Institute of Education of Chinathe Natural Science Foundation of Education Bureau of Henan Province,China(Grant No.2009A140003)the Young Core Instructor from Henan Institute of Education of China
文摘This paper discusses the weak Noether symmetry for a nonholonomic controllable mechanical system of Chetaev type, and presents expressions of three kinds of conserved quantities obtained by using weak Noether symmetry. Finally, the application of these new results is illustrated by an example.
基金supported by the Key Disciplines Building Foundation of Henan Institute of Education
文摘A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the determining equations of the special Mei symmetry, the constrained restriction equations, the additional restriction equations, and the definitions of the weak Mei symmetry and the strong Mei symmetry of the nonholonomic controllable mechanical system are given. The condition under which Mei symmetry is a Lie symmetry is obtained. The form of the Hojman conserved quantity of the corresponding holonomic mechanical system, the weak Hojman conserved quantity and the strong Hojman conserved quantity of the nonholonomie controllable mechanical system are obtained. An example is given to illustrate the application of the results.
文摘With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical system are given the relativistic Chaplygin equation. Nielsen equation and Appell equation .for variable mass controllable mechanical system in quasi-coordinates and generalized- coordinates are obtained, and the equations of motion of relativistic controllable mechanical system for holonomic system and constant mass system are diseussed
基金Supported by the National Natural Science Foundation of China(51375053)
文摘In order to move tracked vehicles at an extremely slowspeed with automated mechanical transmission( AMT),slowdriving function was added in the original system. The principle and requirement of slowdriving function were analyzed. Based on analysis of slow driving characteristic,identification of slowdriving condition and fuzzy control algorithm,a control strategy of the clutch was designed. In order to realize slowdriving,the clutch was controlled in a slipping mode as manual driving. The vehicle speed was increased to a required speed and kept in a small range by engaging or disengaging the clutch to the approximate half engagement point. Based on the control strategy,a control software was designed and tested on a tracked vehicle with AMT. The test results showthat the control of the clutch with the slowdriving function was smoother than that with original systemand the vehicle speed was slower and steadier.
基金This work was financially supported by the National Natural Science Foundation of China(No.52104236)the Fundamental Research Funds for the Central Universities(No.22CX06018A)the China Postdoctoral Science Foundation(No.2020M672177).
文摘Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear about the phased characteristics of the coupling process with in situ stress,which induce coal damage and instability.Therefore,in the work based on the mining stress paths induced by typical outburst accidents,the gradual and sudden change of three-dimensional stress is taken as the background for the mechanical reconstruction of the disaster process.Then the true triaxial physical experiments are conducted on the damage and instability of coal containing gas under multiple stress paths.Finally,the response characterization between coal damage and gas pressure has been clarified,revealing the mechanism of action of gas pressure during the initial failure of coals.And the main controlling mechanism during the outburst process is elucidated in the coupling process of in situ stress with gas pressure.The results show that during the process of stress loading and unloading,the original gas pressure enters the processes of strengthening and weakening the action ability successively.And the strengthening effect continues to the period of large-scale destruction of coals.The mechanical process of gas pressure during the initial failure of coals can be divided into three stages:the enhancement of strengthening action ability,the decrease of strengthening action ability,and the weakening action ability.The entire process is implemented by changing the dominant action of in situ stress into the dominant action of gas pressure.The failure strength of coals is not only affected by its original mechanical strength,but also by the stress loading and unloading paths,showing a particularly significant effect.Three stages can be divided during outburst inoculation process.That is,firstly,the coals suffer from initial damage through the dominant action of in situ stress with synergy of gas pressure;secondly,the coals with spallation of structural division are generated through the dominant action of gas pressure with synergy of in situ stress,accompanied by further fragmentation;and finally,the fractured coals suffer from fragmentation and pulverization with the gas pressure action.Accordingly,the final broken coals are ejected out with the gas action,initiating an outburst.The research results can provide a new perspective for deepening the understanding of coal and gas outburst mechanism,laying a theoretical foundation for the innovation of outburst prevention and control technologies.
基金sponsored by the National Key Research and Development Program of China(2021YFC2501800)the National Natural Science Foundation of China(No.U1909218)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.
基金supported by the National Natural Science Foundation of China(11927803A020414).
文摘Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
文摘To realize high-precision Single-axial Rotating FOG-SINS,a low-power,low-cost,middle-precision rotating control mechanism design for single-axial rotating navigation system is put forward.Through theory analysis,design and experimental verification,the rotating control mechanism has good control precision and high reliability,which meets the demands for developing middle&high-precision FOG-SINS.
基金The National Natural Science Foundation of China(No.50975047)
文摘The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.
基金This work was supported by the National Natural Science Foundation of China(31971731,41771121)the Xinjiang National Key Research and Development Program(2019B00005)+1 种基金the National Key Research and Development Program(2017YFC0506705)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017476).
文摘Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.