期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Potentiation of PIEZO2 mechanically-activated currents in sensory neurons mediates vincristine-induced mechanical hypersensitivity 被引量:1
1
作者 Mingli Duan Yurui Jia +4 位作者 Lifang Huo Yiting Gao Jia Wang Wei Zhang Zhanfeng Jia 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第8期3365-3381,共17页
Vincristine,a widely used chemotherapeutic agent for treating different cancer,often induces severe peripheral neuropathic pain.A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodyn... Vincristine,a widely used chemotherapeutic agent for treating different cancer,often induces severe peripheral neuropathic pain.A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodynia and hyperalgesia.However,mechanisms underlying vincristine-induced mechanical allodynia and hyperalgesia are not well understood.In the present study,we show with behavioral assessment in rats that vincristine induces mechanical allodynia and hyperalgesia in a PIEZO2 channel-dependent manner since gene knockdown or pharmacological inhibition of PIEZO2 channels alleviates vincristine-induced mechanical hypersensitivity.Electrophysiological results show that vincristine potentiates PIEZO2 rapidly adapting(RA)mechanically-activated(MA)currents in rat dorsal root ganglion(DRG)neurons.We have found that vincristine-induced potentiation of PIEZO2 MA currents is due to the enhancement of static plasma membrane tension(SPMT)of these cells following vincristine treatment.Reducing SPMT of DRG neurons by cytochalasin D(CD),a disruptor of the actin filament,abolishes vincristine-induced potentiation of PIEZO2 MA currents,and suppresses vincristine-induced mechanical hypersensitivity in rats.Collectively,enhancing SPMT and subsequently potentiating PIEZO2 MA currents in primary afferent neurons may be an underlying mechanism responsible for vincristineinduced mechanical allodynia and hyperalgesia in rats.Targeting to inhibit PIEZO2 channels may be an effective analgesic method to attenuate vincristine-induced mechanical hypersensitivity. 展开更多
关键词 VINCRISTINE Peripheral neuropathic pain mechanical hypersensitivity Dorsal root ganglion neurons PIEZO2mechanically-activated currents
原文传递
Effect of acetyl-L-carnitine on hypersensitivity in acute recurrent caerulein-induced pancreatitis and microglial activation along the brain’s pain circuitry 被引量:4
2
作者 Sabrina L McIlwrath Marlene E Starr +2 位作者 Abigail E High Hiroshi Saito Karin N Westlund 《World Journal of Gastroenterology》 SCIE CAS 2021年第9期794-814,共21页
BACKGROUND Acute pancreatitis(AP)and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis.The validated caerulein-(CAE)induced mouse model of acute/recu... BACKGROUND Acute pancreatitis(AP)and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis.The validated caerulein-(CAE)induced mouse model of acute/recurring AP produces secondary persistent hypersensitivity and anxiety-like behavioral changes for study.AIM To determine efficacy of acetyl-L-carnitine(ALC)to reduce pain-related behaviors and brain microglial activation along the pain circuitry in CAE-pancreatitis.METHODS Pancreatitis was induced with 6 hly intraperitoneal(i.p.)injections of CAE(50μg/kg),3 d a week for 6 wk in male C57BL/6J mice.Starting in week 4,mice received either vehicle or ALC until experiment’s end.Mechanical hypersensitivity was assessed with von Frey filaments.Heat hypersensitivity was determined with the hotplate test.Anxiety-like behavior was tested in week 6 using elevated plus maze and open field tests.Microglial activation in brain was quantified histologically by immunostaining for ionized calcium-binding adaptor molecule 1(Iba1).RESULTS Mice with CAE-induced pancreatitis had significantly reduced mechanical withdrawal thresholds and heat response latencies,indicating ongoing pain.Treatment with ALC attenuated inflammation-induced hypersensitivity,but hypersensitivity due to abdominal wall injury caused by repeated intraperitoneal injections persisted.Animals with pancreatitis displayed spontaneous anxiety-like behavior in the elevated plus maze compared to controls.Treatment with ALC resulted in increased numbers of rearing activity events,but time spent in“safety”was not changed.After all the abdominal injections,pancreata were translucent if excised at experiment’s end and opaque if excised on the subsequent day,indicative of spontaneous healing.Post mortem histopathological analysis performed on pancreas sections stained with Sirius Red and Fast Green identified wide-spread fibrosis and acinar cell atrophy in sections from mice with CAE-induced pancreatitis that was not rescued by treatment with ALC.Microglial Iba1 immunostaining was significantly increased in hippocampus,thalamus(intralaminar nuclei),hypothalamus,and amygdala of mice with CAE-induced pancreatitis compared to naïve controls but unchanged in the primary somatosensory cortex compared to naïves.CONCLUSION CAE-induced pancreatitis caused increased pain-related behaviors,pancreatic fibrosis,and brain microglial changes.ALC alleviated CAE-induced mechanical and heat hypersensitivity but not abdominal wall injury-induced hypersensitivity caused by the repeated injections. 展开更多
关键词 Acute recurrent pancreatitis Neuropathic pain mechanical hypersensitivity Heat hypersensitivity Anxiety-like behavior Ionized calcium-binding adaptor molecule 1
下载PDF
Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin 被引量:7
3
作者 Fei Yang Han Fu +8 位作者 Yun-Fei Lu Xiao-Liang Wang Yan Yang Fan Yang Yao-Qing Yu Wei Sun Jia-Shuang Wang Michael Costigan Jun Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2014年第6期887-902,共16页
Intractable central post-stroke pain(CPSP) is one of the most common sequelae of stroke, but has been inadequately studied to date. In this study, we first determined the relationship between the lesion site and cha... Intractable central post-stroke pain(CPSP) is one of the most common sequelae of stroke, but has been inadequately studied to date. In this study, we first determined the relationship between the lesion site and changes in mechanical or thermal pain sensitivity in a rat CPSP model with experimental thalamic hemorrhage produced by unilateral intra-thalamic collagenase IV(ITC) injection. Then, we evaluated the efficacy of gabapentin(GBP), an anticonvulsant that binds the voltage-gated Ca2+ channel α2δ and a commonly used anti-neuropathic pain medication. Histological case-by-case analysis showed that only lesions confined to the medial lemniscus and the ventroposterior lateral/medial nuclei of the thalamus and/or the posterior thalamic nucleus resulted in bilateral mechanical pain hypersensitivity. All of the animals displaying CPSP also had impaired motor coordination, while control rats with intra-thalamic saline developed no central pain or motor deficits. GBP had a dose-related anti-allodynic effect after a single administration(1, 10, or 100 mg/kg) on day 7 post-ITC, with significant effects lasting at least 5 hfor the higher doses. However, repeated treatment, once a day for two weeks, resulted in complete loss of effectiveness(drug tolerance) at 10 mg/kg, while effectiveness remained at 100 mg/kg, although the time period of efficacious analgesia was reduced. In addition, GBP did not change the basal pain sensitivity and the motor impairment caused by the ITC lesion, suggesting selective action of GBP on the somatosensory system. 展开更多
关键词 central post-stroke pain intracerebral hemorrhage intra-thalamic collagenase injection mechanical pain hypersensitivity gabapentinoids anti-allodynic effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部