The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit...The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.展开更多
Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical prope...Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints.展开更多
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ...A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。展开更多
An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure cr...An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering.展开更多
In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to s...In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
This paper described the work of welding process design for the " West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, clim...This paper described the work of welding process design for the " West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, climate, culture and the flexibility of the welding methods, this work recommended the semi-automatic process at the east and middle sections and automatic process at the west section of the pipeline project. The manual process is recommended on the tie-in joints and repairs. The double joint pipe and the 3 joint pipe are recommended at the water net place and some in-ditch welding place to reduce the welding volume. Also the special redesigned bevels are recommended for the automatic process and the semiautomatic process. Through all destructive tests, the results shows the welds are meet the requirements of related standards, specifications and design documents.展开更多
Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A compari...Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A comparison between the two processes was performed by varying the welding speed while keeping the rotational speed constant, Through the analysis of the force and torque produced during welding and a simple analytical model, it was possible to show that in SSFSW there is more effective coupling with the tool and the heat produced is more efficiently distributed. This process decreases both the welding area and the diffusion at the interface of the two alloys compared with FSW. The minimum microhardness occurred at the advancing side (AS) at the interface between the thermo-mechanically affected zone (TMAZ) and the stir zone (SZ) in both processes, although the decrease was more gradual in SSFSW. This interface is also where all specimens failed for both welding technologies. An increase in tensile strength was measured in SSFSW compared with standard FSW. Furthermore, it was possible to establish the mechanical performance of the material in the fracture zone using digital image correlation.展开更多
Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the roc...Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the rock slopes evolution.Detailed field surveys indicate that gentle fractures are concentrated in four main zones.Moreover,the kinematics of the fracture system suggest that the genesis of these fractures can be synthesized into a progressive evolution model.This model indicates that the joints begin with the formation of an array of en echelon cracks that are subjected to continued crack elongation and shearing before ultimately approaching one another and interacting to form a complex joint system.Geomechanical analysis is performed to reveal the mechanisms of this genesis,and three main fracture patterns are identified based on the slope stress and are classified with respect to the slope evolution.Based on the detail field investigations and the evolutionary history of the river valley,we propose that intermittent incision by the river was the main factor contributing to the concentrated distribution of gently dipping joints.展开更多
Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active canc...Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active cancellation and digital cancellation. This pa- per tries to achieve the full-duplex system without using active cancellation, thus a full-duplex system using a joint mechanism based on a novel passive cancellation method and a novel digital cancellation method is proposed. Therein, a good antenna place- ment guided by the theory of the antenna electromagnetic field for the passive cancellation is presented. For the proposed digital can- cellation method, unlike previous separate mechanisms, it is de- signed by using the recursive least square (RLS) algorithm jointly with passive cancellation. The self-interference channel state in- formation (CSI) is transferred as the input of digital cancellation to balance the performance and the complexity. Experimental results show that the proposed self-interference cancellation mechanism can achieve about 85 dB which is better than the previous re- search. Meanwhile, this design provides a better performance compared with half-duplex with both line-of-sight channel and non- line-of-sight channel.展开更多
The microstructure and mechanical properties(strength, fatigue and formability) of dissimilar/similar weld joints between DP780 and DP980 steels were studied. The microstructure in fusion zone(FZ) was lath martens...The microstructure and mechanical properties(strength, fatigue and formability) of dissimilar/similar weld joints between DP780 and DP980 steels were studied. The microstructure in fusion zone(FZ) was lath martensite(LM), and alloying elements in the FZ were uniformly distributed. The hardness in the FZ of dissimilar weld joint was similar to the average value(375 HV) of the two similar weld joints. The microstructural evolution in heat affected zone(HAZ) of dissimilar/similar weld joints was as follows:LM(coarse-grained HAZ) →finer LM(fine-grained HAZ) →M-A constituent and ferrite(intercritically HAZ) →tempered martensite(TM) and ferrite(sub-critical HAZ). Lower hardness in intercritically HAZ and sub-critical HAZ(softening zones) was observed compared to base metal(BM) in dissimilar/similar weld joints. The size of softening zone was 0.2-0.3 mm and reduction in hardness was ~7.6%-12.7% of BM in all the weld joints, which did not influence the tensile properties of weld joints such that fracture location was in BM. Formability of dissimilar weld joints was inferior compared to similar weld joints because of the softening zone, non-uniform microstructure and hardness on the two sides of FZ. The effect of microstructure on fatigue life was not influenced due to the presence of welding concavity.展开更多
Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close t...Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.展开更多
To get the movement mode and driving mechanism similar to human shoulder joint,a six degrees of freedom(DOF) serial-parallel bionic shoulder joint mechanism driven by pneumatic muscle actuators(PMAs)was designed.Howev...To get the movement mode and driving mechanism similar to human shoulder joint,a six degrees of freedom(DOF) serial-parallel bionic shoulder joint mechanism driven by pneumatic muscle actuators(PMAs)was designed.However,the structural parameters of the shoulder joint will affect various performances of the mechanism.To obtain the optimal structure parameters,the particle swarm optimization(PSO) was used.Besides,the mathematical expressions of indexes of rotation ranges,maximum bearing torque,discrete dexterity and muscle shrinkage of the bionic shoulder joint were established respectively to represent its many-sided characteristics.And the multi-objective optimization problem was transformed into a single-objective optimization problem by using the weighted-sum method.The normalization method and adaptive-weight method were used to determine each optimization index's weight coefficient;then the particle swarm optimization was used to optimize the integrated objective function of the bionic shoulder joint and the optimal solution was obtained.Compared with the average optimization generations and the optimal target values of many experiments,using adaptive-weight method to adjust weights of integrated objective function is better than using normalization method,which validates superiority of the adaptive-weight method.展开更多
Movement disorders of the human foot-ankle complex are a common occurrence,owing to the altered joint mechanics during foot-ground interactions.Diagnostics of such movement disorders will require quantitative tools to...Movement disorders of the human foot-ankle complex are a common occurrence,owing to the altered joint mechanics during foot-ground interactions.Diagnostics of such movement disorders will require quantitative tools to evaluate in-vivo foot motions,in particular to the multi-segment/joint foot kinematics(MSFK),during gait.Unfortunately,current MSFK analysis largely rely on conventional technologies,such as skin-marker based motion capturing,video fluoroscopy and dynamic 3D scanning,being extremely time-consuming and costly.In this work,a novel movement tracking method,named the point-cloud foot analysis(PFA),was implemented with multi-view depth sensors,to allow fast evaluations of 3D motions of the foot-ankle complex during gait.Quantitative analysis obtained by the PFA methods and their accuracy relative to the conventional MSFK analysis methods were evaluated.The 3D surface reconstructions of the foot-ankle complex were achieved with a RMSE less than 2 mm.It was proven to be feasible to track multi-segment foot motions in both healthy and diseased subjects during walking conditions,with the processing time decreased from more than 4-6 h to less than 6 min for the entire flow of the contact phase analysis.The PFA method can be useful for fast evaluations of the movement disorders of the foot-ankle complex in diagnostics and design of therapeutic interventions and rehabilitation programs for clinical applications.展开更多
The weldabiUty of some material is analyzed with simple calculating program in this paper, and weldability testing data are shared through database system. The welding procedures are designed with help of expert syste...The weldabiUty of some material is analyzed with simple calculating program in this paper, and weldability testing data are shared through database system. The welding procedures are designed with help of expert systems, and the knowledge is shared among welding engineers. Not only the preparing progress of the welding documents is completed with database systems but also the complex decision on the necessity of the qualification test according to the present procedure qualification records (PQRs) and manufacture codes is made. Moreover, the artificial neural network (ANN) technique is proven to be one of the effective ways to predict mechanical properties of welded joints when there are enough tested data to train the models. Finally, the achievements in modeling microstructure of welded joints are introduced, especially in solid transformation and grain growth in both heat-affected zone (HAZ) and welded molten pool.展开更多
In order to solve the problem that the existing cross-modal entity resolution methods easily ignore the high-level semantic informational correlations between cross-modal data,we propose a novel cross-modal entity res...In order to solve the problem that the existing cross-modal entity resolution methods easily ignore the high-level semantic informational correlations between cross-modal data,we propose a novel cross-modal entity resolution for image and text integrating global and fine-grained joint attention mechanism method.First,we map the cross-modal data to a common embedding space utilizing a feature extraction network.Then,we integrate global joint attention mechanism and fine-grained joint attention mechanism,making the model have the ability to learn the global semantic characteristics and the local fine-grained semantic characteristics of the cross-modal data,which is used to fully exploit the cross-modal semantic correlation and boost the performance of cross-modal entity resolution.Moreover,experiments on Flickr-30K and MS-COCO datasets show that the overall performance of R@sum outperforms by 4.30%and 4.54%compared with 5 state-of-the-art methods,respectively,which can fully demonstrate the superiority of our proposed method.展开更多
基金National Natural Science Foundation of China (10272036)
文摘The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.
基金Funded by the National Natural Science Foundation of China(Nos.51505322,51175364)Natural Science Foundation of Shanxi Province of China(No.2013011014-3)
文摘Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Programmanaged by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725。
文摘A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。
基金Funded by the National Natural Science Foundation of China(Nos.11372020 and 10902004)
文摘An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering.
基金This work was supported by the National Natural Science Foundation of China(51504081,51774110,51508166,U1404527)the Science and Technology Breakthrough Project by Henan Province(162102210221,162102310427)+1 种基金the Foundation for Higher Education Key Research Project by Henan Province(15A440013)the Ph.D.Programs Foundation of Henan Polytechnic University(B2018-65,B2018-4,B2016-67).
文摘In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
文摘This paper described the work of welding process design for the " West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, climate, culture and the flexibility of the welding methods, this work recommended the semi-automatic process at the east and middle sections and automatic process at the west section of the pipeline project. The manual process is recommended on the tie-in joints and repairs. The double joint pipe and the 3 joint pipe are recommended at the water net place and some in-ditch welding place to reduce the welding volume. Also the special redesigned bevels are recommended for the automatic process and the semiautomatic process. Through all destructive tests, the results shows the welds are meet the requirements of related standards, specifications and design documents.
文摘Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A comparison between the two processes was performed by varying the welding speed while keeping the rotational speed constant, Through the analysis of the force and torque produced during welding and a simple analytical model, it was possible to show that in SSFSW there is more effective coupling with the tool and the heat produced is more efficiently distributed. This process decreases both the welding area and the diffusion at the interface of the two alloys compared with FSW. The minimum microhardness occurred at the advancing side (AS) at the interface between the thermo-mechanically affected zone (TMAZ) and the stir zone (SZ) in both processes, although the decrease was more gradual in SSFSW. This interface is also where all specimens failed for both welding technologies. An increase in tensile strength was measured in SSFSW compared with standard FSW. Furthermore, it was possible to establish the mechanical performance of the material in the fracture zone using digital image correlation.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41521002 41130745+2 种基金 41272330)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No. SKLGP2016Z015)supported by the Funding of Science and Technology Office of Sichuan Province (Grant Nos. 2015JQ0020)
文摘Gently dipping fractures subjected to river incision are widely distributed on rock slopes.In this paper,a rock slope on the Nujiang River(China)is investigated to study the role of gently dipping fractures in the rock slopes evolution.Detailed field surveys indicate that gentle fractures are concentrated in four main zones.Moreover,the kinematics of the fracture system suggest that the genesis of these fractures can be synthesized into a progressive evolution model.This model indicates that the joints begin with the formation of an array of en echelon cracks that are subjected to continued crack elongation and shearing before ultimately approaching one another and interacting to form a complex joint system.Geomechanical analysis is performed to reveal the mechanisms of this genesis,and three main fracture patterns are identified based on the slope stress and are classified with respect to the slope evolution.Based on the detail field investigations and the evolutionary history of the river valley,we propose that intermittent incision by the river was the main factor contributing to the concentrated distribution of gently dipping joints.
基金supported by the National Natural Science Foundation of China(601720456103200661271282)
文摘Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active cancellation and digital cancellation. This pa- per tries to achieve the full-duplex system without using active cancellation, thus a full-duplex system using a joint mechanism based on a novel passive cancellation method and a novel digital cancellation method is proposed. Therein, a good antenna place- ment guided by the theory of the antenna electromagnetic field for the passive cancellation is presented. For the proposed digital can- cellation method, unlike previous separate mechanisms, it is de- signed by using the recursive least square (RLS) algorithm jointly with passive cancellation. The self-interference channel state in- formation (CSI) is transferred as the input of digital cancellation to balance the performance and the complexity. Experimental results show that the proposed self-interference cancellation mechanism can achieve about 85 dB which is better than the previous re- search. Meanwhile, this design provides a better performance compared with half-duplex with both line-of-sight channel and non- line-of-sight channel.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51274063 and 51305285)the National Program on Key Basic Research Project(Grant No.2011CB606306-2)+1 种基金the Open Research Fund from the State Key Laboratory of Rolling and Automation,Northeastern University(Grant No.2016005)the Project Funded by China Postdoctoral Science Foundation(Grant No.2016M601877)
文摘The microstructure and mechanical properties(strength, fatigue and formability) of dissimilar/similar weld joints between DP780 and DP980 steels were studied. The microstructure in fusion zone(FZ) was lath martensite(LM), and alloying elements in the FZ were uniformly distributed. The hardness in the FZ of dissimilar weld joint was similar to the average value(375 HV) of the two similar weld joints. The microstructural evolution in heat affected zone(HAZ) of dissimilar/similar weld joints was as follows:LM(coarse-grained HAZ) →finer LM(fine-grained HAZ) →M-A constituent and ferrite(intercritically HAZ) →tempered martensite(TM) and ferrite(sub-critical HAZ). Lower hardness in intercritically HAZ and sub-critical HAZ(softening zones) was observed compared to base metal(BM) in dissimilar/similar weld joints. The size of softening zone was 0.2-0.3 mm and reduction in hardness was ~7.6%-12.7% of BM in all the weld joints, which did not influence the tensile properties of weld joints such that fracture location was in BM. Formability of dissimilar weld joints was inferior compared to similar weld joints because of the softening zone, non-uniform microstructure and hardness on the two sides of FZ. The effect of microstructure on fatigue life was not influenced due to the presence of welding concavity.
基金co-supported by the National Natural Science Foundation of China (61175104)National Science and Technology Support Program of China (2012BA114B01)
文摘Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
基金the National Natural Science Foundation of China(NO.51405229)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20151470 and BK20130796)
文摘To get the movement mode and driving mechanism similar to human shoulder joint,a six degrees of freedom(DOF) serial-parallel bionic shoulder joint mechanism driven by pneumatic muscle actuators(PMAs)was designed.However,the structural parameters of the shoulder joint will affect various performances of the mechanism.To obtain the optimal structure parameters,the particle swarm optimization(PSO) was used.Besides,the mathematical expressions of indexes of rotation ranges,maximum bearing torque,discrete dexterity and muscle shrinkage of the bionic shoulder joint were established respectively to represent its many-sided characteristics.And the multi-objective optimization problem was transformed into a single-objective optimization problem by using the weighted-sum method.The normalization method and adaptive-weight method were used to determine each optimization index's weight coefficient;then the particle swarm optimization was used to optimize the integrated objective function of the bionic shoulder joint and the optimal solution was obtained.Compared with the average optimization generations and the optimal target values of many experiments,using adaptive-weight method to adjust weights of integrated objective function is better than using normalization method,which validates superiority of the adaptive-weight method.
基金supported by National Key Research and Development Project,China(No.2022YFC2009500)Shanghai Science and Technology Development Funds(No.20S31901000&No.21511102200)Medical Engineering Fund of Fudan University(No.yg2021-019).
文摘Movement disorders of the human foot-ankle complex are a common occurrence,owing to the altered joint mechanics during foot-ground interactions.Diagnostics of such movement disorders will require quantitative tools to evaluate in-vivo foot motions,in particular to the multi-segment/joint foot kinematics(MSFK),during gait.Unfortunately,current MSFK analysis largely rely on conventional technologies,such as skin-marker based motion capturing,video fluoroscopy and dynamic 3D scanning,being extremely time-consuming and costly.In this work,a novel movement tracking method,named the point-cloud foot analysis(PFA),was implemented with multi-view depth sensors,to allow fast evaluations of 3D motions of the foot-ankle complex during gait.Quantitative analysis obtained by the PFA methods and their accuracy relative to the conventional MSFK analysis methods were evaluated.The 3D surface reconstructions of the foot-ankle complex were achieved with a RMSE less than 2 mm.It was proven to be feasible to track multi-segment foot motions in both healthy and diseased subjects during walking conditions,with the processing time decreased from more than 4-6 h to less than 6 min for the entire flow of the contact phase analysis.The PFA method can be useful for fast evaluations of the movement disorders of the foot-ankle complex in diagnostics and design of therapeutic interventions and rehabilitation programs for clinical applications.
基金Acknowledgements Financial support by the National Natural Science Foundation of China under Grant No. 50775112 is gratefully acknowledged.
文摘The weldabiUty of some material is analyzed with simple calculating program in this paper, and weldability testing data are shared through database system. The welding procedures are designed with help of expert systems, and the knowledge is shared among welding engineers. Not only the preparing progress of the welding documents is completed with database systems but also the complex decision on the necessity of the qualification test according to the present procedure qualification records (PQRs) and manufacture codes is made. Moreover, the artificial neural network (ANN) technique is proven to be one of the effective ways to predict mechanical properties of welded joints when there are enough tested data to train the models. Finally, the achievements in modeling microstructure of welded joints are introduced, especially in solid transformation and grain growth in both heat-affected zone (HAZ) and welded molten pool.
基金the Special Research Fund for the China Postdoctoral Science Foundation(No.2015M582832)the Major National Science and Technology Program(No.2015ZX01040201)the National Natural Science Foundation of China(No.61371196)。
文摘In order to solve the problem that the existing cross-modal entity resolution methods easily ignore the high-level semantic informational correlations between cross-modal data,we propose a novel cross-modal entity resolution for image and text integrating global and fine-grained joint attention mechanism method.First,we map the cross-modal data to a common embedding space utilizing a feature extraction network.Then,we integrate global joint attention mechanism and fine-grained joint attention mechanism,making the model have the ability to learn the global semantic characteristics and the local fine-grained semantic characteristics of the cross-modal data,which is used to fully exploit the cross-modal semantic correlation and boost the performance of cross-modal entity resolution.Moreover,experiments on Flickr-30K and MS-COCO datasets show that the overall performance of R@sum outperforms by 4.30%and 4.54%compared with 5 state-of-the-art methods,respectively,which can fully demonstrate the superiority of our proposed method.