Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and d...Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker's postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3.展开更多
The use of vacuum interrupters(VIs)as the current interruption component for switches,circuit breakers,reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950...The use of vacuum interrupters(VIs)as the current interruption component for switches,circuit breakers,reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950’s.This electrical product has developed a dominating position for switching and protecting distribution circuits.VIs are even being introduced into switching products operating at transmission voltages.Among the reasons for the VI’s popularity are its compactness,its range of application,its low cost,its superb electrical and mechanical life and its ease of application.Its major advantage is its well-established reliability.In this paper we show how this reliability has been achieved by design,by mechanical life testing and by electrical performance testing.We introduce the“sealed for life”concept for the VI’s integrity.We discuss this in terms of what is meant by a practical leak rate for VIs with a life of over 30 years.We show that a simple high voltage withstand test is an easy and effective method for monitoring the long-term vacuum integrity.Finally we evaluate the need for routine inspection of this electrical product when it is used in adverse ambient environments.展开更多
文摘Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker's postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3.
文摘The use of vacuum interrupters(VIs)as the current interruption component for switches,circuit breakers,reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950’s.This electrical product has developed a dominating position for switching and protecting distribution circuits.VIs are even being introduced into switching products operating at transmission voltages.Among the reasons for the VI’s popularity are its compactness,its range of application,its low cost,its superb electrical and mechanical life and its ease of application.Its major advantage is its well-established reliability.In this paper we show how this reliability has been achieved by design,by mechanical life testing and by electrical performance testing.We introduce the“sealed for life”concept for the VI’s integrity.We discuss this in terms of what is meant by a practical leak rate for VIs with a life of over 30 years.We show that a simple high voltage withstand test is an easy and effective method for monitoring the long-term vacuum integrity.Finally we evaluate the need for routine inspection of this electrical product when it is used in adverse ambient environments.