期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on dynamic behavior of mechanically pumped two-phase loop with a novel accumulator in simulated space environment 被引量:1
1
作者 Qingliang MENG Tao ZHANG +3 位作者 Feng YU Yu ZHAO Zhenming ZHAO Zhenhua ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期102-116,共15页
Mechanically pumped two-phase loop(MPTL)which is a prominent two-phase heat transfer technology presents a promising prospect in thermal control for space payload.However,transient behavior of MPTL caused by phase-cha... Mechanically pumped two-phase loop(MPTL)which is a prominent two-phase heat transfer technology presents a promising prospect in thermal control for space payload.However,transient behavior of MPTL caused by phase-change and heat sources load-on/off in simulated space environment is rarely reported.In the present study,one MPTL setup was designed and constructed,and experimentally studied.Particularly,a novel two-phase thermally-controlled accumulator integrated with passive cooling measure and three capillary structures was designed as the temperature-control device.Dynamic behavior of the start-up,temperature control,and temperature adjustment were monitored;meanwhile,thermodynamic behavior within the proposed accumulator,the operating behavior as well as the heat and mass transfer behavior between the main loop and the accumulator were revealed.The results show that the fluid management function of the capillary structures for the novel accumulator is verified.The working point of the MPTL system can be adjusted by changing the temperature control point of the accumulator and it is little influenced by external heat flux and heat sources on/off.Pressure-drop oscillations which are manifested as fluctuations of temperature and pressure can be observed after phase changing due to the compressible volume within the accumulator and the negative-slope portion of the internal pressure. 展开更多
关键词 Heat and mass transfer mechanically pumped twophase loop(MPTL) Pressure drop fluctuation Thermal control Two-phase flow
原文传递
Review on thermal management technologies for electronics in spacecraft environment
2
作者 Yi-Gao Lv Yao-Ting Wang +2 位作者 Tong Meng Qiu-Wang Wang Wen-Xiao Chu 《Energy Storage and Saving》 2024年第3期153-189,共37页
Due to the rapid development of the space industry,ever higher demands are being made for the optimization and improvement of spacecraft thermal management systems.Thermal control technology has become one of the key ... Due to the rapid development of the space industry,ever higher demands are being made for the optimization and improvement of spacecraft thermal management systems.Thermal control technology has become one of the key bottlenecks that restrict the level of spacecraft design.In this paper,the thermal management technologies(TMTs)for spacecraft electronics are reviewed according to the different heat transfer processes,including heat acquisition,heat transport,and heat rejection.The researches on efficient heat acquisition include the utilization of high thermal conductance materials,the development of novel package structure based on micro-/nanoelectromechanical system(MEMS/NEMS)technologies,and advanced near-junction microfluidic cooling techniques.For the heat transport process,various heat pipes and mechanical pumped fluid loops(MPFLs)are widely implemented to transport heat from heat generation components to the ultimate heat sinks.The heat pipes are divided into two categories based on their structure layout,i.e.,separated heat pipes and unseparated heat pipes.The merits and demerits of these heat pipes and MPFLs(including the single-phase MPFL and the two-phase MPFL)are discussed and summarized respectively.In terms of the heat rejection for spacecraft,thermal radiators are normally the sole option due to the unique space environment.To meet the requirements of large heat dissipation power and fluctuated thermal environment,research efforts on the radiators mainly focus on the development of deployable radiators,variable emissivity radiators,and the combination with other techniques.Due to the fluctuated characteristics of the heat power of internal electronics and the outer thermal environment,the phase change materials(PCMs)exhibit great advantages in this scenario and have attracted a lot of research attention.This review aims to serve as a reference guide for the development of thermal management system in the future spacecraft. 展开更多
关键词 Thermal management ELECTRONICS SPACECRAFT Heat pipe mechanically pumped fluid loop RADIATOR Phase change material
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部