期刊文献+
共找到5,977篇文章
< 1 2 250 >
每页显示 20 50 100
Practical Analysis of Mechanical Automation Technology in Automobile Manufacturing
1
作者 Miao Zhang 《Journal of Electronic Research and Application》 2023年第5期24-29,共6页
In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic... In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic demand,the automobile manufacturing industry has been continuously developing and growing globally.However,to cope with increasingly fierce market competition and ever-changing consumer demands,the automobile manufacturing industry is also facing the challenges of improving production efficiency,reducing costs,and improving product quality.In this context,automation technology has gradually become a major trend in the automobile manufacturing industry.As an important support of modern industry,automation technology has shown great application potential in many fields.From industrial production to daily life,automation technology can be seen everywhere.In the field of manufacturing,especially in automobile manufacturing,the application of automation technology is getting more and more attention.Automated production lines,intelligent robots,and automated warehousing systems have all changed the face of automobile manufacturing to varying degrees,bringing companies higher efficiency,more stable quality,and greater competitive advantages.The application trend of this automation technology in various fields not only meets the needs of modern industry for efficient,precise,and sustainable development but also provides new ideas and paths for the future development of the automobile manufacturing industry. 展开更多
关键词 mechanical automation technology automobile manufacturing Practical analysis Production efficiency
下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
2
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
下载PDF
Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function
3
作者 Luhao Yuan Dongdong Gu +8 位作者 Xin Liu Keyu Shi Kaijie Lin He Liu Han Zhang Donghua Dai Jianfeng Sun Wenxin Chen Jie Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期189-206,共18页
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.... Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities. 展开更多
关键词 additive manufacturing laser powder bed fusion bionic structure CUTTLEBONE mechanical properties shape memory function
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing
4
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
5
作者 ZHANG Tao QIN Zhen-yang +2 位作者 GONG Hai WU Yun-xin CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2181-2193,共13页
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli... Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening. 展开更多
关键词 wire-arc additive manufacture inter-layer cold rolling thermal-mechanical treatment microstructure mechanical properties strengthening mechanism
下载PDF
Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys
6
作者 Dong Ma Chunjie Xu +7 位作者 Shang Sui Yuanshen Qi Can Guo Zhongming Zhang Jun Tian Fanhong Zeng Sergei Remennik Dan Shechtman 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期276-289,共14页
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve... Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials. 展开更多
关键词 wire arc additive manufacturing heat treatment Mg-RE-Zn-Zr alloys LPSO structure mechanical properties
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading
7
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Characterization and Modeling of Mechanical Properties of Additively Manufactured Coconut Fiber-Reinforced Polypropylene Composites
8
作者 George Mosi Bernard W. Ikua +1 位作者 Samuel K. Kabini James W. Mwangi 《Advances in Materials Physics and Chemistry》 CAS 2024年第6期95-112,共18页
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene... In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy. 展开更多
关键词 Additive manufacturing Artificial Neural Network mechanical Properties Natural Fibers POLYPROPYLENE
下载PDF
Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing 被引量:1
9
作者 Dong Ma Chun-jie Xu +4 位作者 Jun Tian Shang Sui Can Guo Xiang-quan Wu Zhong-ming Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期280-288,共9页
Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.... Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small. 展开更多
关键词 magnesium alloy wire arc additive manufacturing ANISOTROPY MICROSTRUCTURE mechanical properties
下载PDF
Deformation Characteristics and Mechanical Properties of Ti/Al Bimetallic Composite Materials Fabricated by Wire Plus Arc Additive Manufacturing
10
作者 夏玉峰 ZHANG Xue +2 位作者 CHEN Lei JIANG Xianhong LIAO Hailong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期885-892,共8页
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ... We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures. 展开更多
关键词 wire plus arc additive manufacturing aluminium alloy titanium alloy bimetallic composite materials deformation mechanical properties
下载PDF
On the Digital Transformation of the Automobile Manufacturing Industry in the Chengdu-Chongqing Economic Circle:Mechanism of Action and Feasible Paths
11
作者 Chen Ying Peng Yajie 《Contemporary Social Sciences》 2023年第1期17-43,共27页
With a long industrial chain and a powerful ability to drive other industries,the automobile manufacturing industry has a prominent strategic position in the national economy.In recent years,many countries have put on... With a long industrial chain and a powerful ability to drive other industries,the automobile manufacturing industry has a prominent strategic position in the national economy.In recent years,many countries have put on their agenda the digitalization of the automobile manufacturing industry,leading to an connected,autonomous,shared,and electric(also known as CASE)①development trend in the industry.As one of the six major automobile industry clusters in China,the Chengdu-Chongqing economic circle has achieved initial results in the digital transformation of the automobile manufacturing industry.However,the region is still faced with some constraints,such as insufficient digital infrastructure,relatively slow development of new automobile products,insufficient innovation ability of the automobile industry,and complex digital transformation of small and medium-sized automobile enterprises(automobile SMEs).This paper intends to construct a framework for the mechanism of action of the digital transformation in the automobile manufacturing industry,analyze the effects of the digital transformation of the automobile manufacturing industry in the Chengdu-Chongqing economic circle,and propose feasible paths for the digital transformation of the automobile manufacturing industry in the region by drawing on domestic and international experience in this regard.The specific paths include:(a)Smoothing the“dual-core”data chain to facilitate the digital transformation of the automobile manufacturing industry;(b)Developing the new energy vehicle(NEV)industry to upgrade the quality of automobile products;(c)Achieving corner overtaking in the digital transformation of the automobile manufacturing industry with digital technology;(d)Jointly building the automobile industrial park to promote the digital transformation of the industry;(e)Addressing problems facing automobile SMEs in digital transformation via targeted policy tools. 展开更多
关键词 Chengdu-Chongqing economic circle automobile manufacturing industry digital transformation mechanism of action
下载PDF
Practice Teaching Reform of Mechanical Design and Manufacture and Its Automation Specialty under Transformation and Development
12
作者 Qian Yi 《Review of Educational Theory》 2018年第2期48-51,共4页
With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especiall... With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especially for applied undergraduate colleges. The reform of practical teaching is particularly important. Under the development of education transformation, the reform of mechanical design and manufacture and the practice teaching of automation specialty also occupy a very important position. Through the understanding of the reform of the practical teaching of this specialty, the effect of the reform is observed, and a reasonable teaching scheme is put forward to promote the steps of the transformation of the practical teaching. 展开更多
关键词 mechanical design mechanical manufacturing mechanical automation SPECIALTY Practical teaching of TRANSFORMATION and DEVELOPMENT
下载PDF
Additive manufacturing of magnesium and its alloys: process-formabilitymicrostructure-performance relationship and underlying mechanism 被引量:6
13
作者 Shang Sui Shuai Guo +8 位作者 Dong Ma Can Guo Xiangquan Wu Zhongming Zhang Chunjie Xu Dan Shechtman Sergei Remennik Daniel Safranchik Rimma Lapovok 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期247-290,共44页
Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloy... Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization. 展开更多
关键词 additive manufacturing magnesium alloys underlying mechanisms forming quality microstructure characteristics and properties
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:9
14
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress mechanisms of crack formation Methods of crack inhibition
下载PDF
Advances and challenges in direct additive manufacturing of dense ceramic oxides
15
作者 Zhiqi Fan Qiyang Tan +1 位作者 Chengwei Kang Han Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期59-94,共36页
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac... Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field. 展开更多
关键词 ceramic oxides direct additive manufacturing microstructure DEFECTS mechanical properties
下载PDF
A critical review of direct laser additive manufacturing ceramics
16
作者 Dake Zhao Guijun Bi +4 位作者 Jie Chen WaiMeng Quach Ran Feng Antti Salminen Fangyong Niu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2607-2626,共20页
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin... The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics. 展开更多
关键词 3D printing laser additive manufacturing CERAMICS quality MICROSTRUCTURE mechanical properties
下载PDF
The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review 被引量:2
17
作者 Rui Xu Chuanqing Chen +4 位作者 Jiapeng Sun Yulong He Xin Li Ming-Hui Lu Yanfeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期416-452,共37页
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta... Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials bistable units mechanical properties design and manufacture
下载PDF
A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens
18
作者 Xin Xue Haitao Li Rodolfo Lorenzo 《Journal of Renewable Materials》 EI CAS 2024年第4期869-894,共26页
This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber(BS)in literature.According to literature reviews,the strength of BS under different load modes is affected by a series o... This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber(BS)in literature.According to literature reviews,the strength of BS under different load modes is affected by a series of factors,such as the type of original bamboo,growth position,resin content,treatment method and density.Therefore,different production processes can be adopted according to different requirements,and bamboo scrimbers can also be classified accordingly.In addition,this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS,so that readers can have an overall understanding of the existing research and make more innovative and valuable research on this basis.This review provides and discusses the conclusive observations,the current research gaps and future research directions on the mechanical properties of BS. 展开更多
关键词 Bamboo scrimber manufacturing process mechanical properties failure modes constitutive model
下载PDF
Performance-control-orientated hybrid metal additive manufacturing technologies:state of the art,challenges,and future trends
19
作者 Jiming Lv Yuchen Liang +6 位作者 Xiang Xu Gang Xu Hongmei Zhang Haifei Lu Kaiyu Luo Jie Cai Jinzhong Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期274-328,共55页
Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as therma... Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as thermal history,residual stress accumulation,and columnar grain epitaxial growth,consistently hinders their broad application in standardized industrial production.To overcome these challenges,performance-control-oriented hybrid AM(HAM)technologies have been introduced.These technologies,by leveraging external auxiliary processes,aim to regulate microstructural evolution and mechanical properties during metal AM.This paper provides a systematic and detailed review of performance-control-oriented HAM technology,which is categorized into two main groups:energy field-assisted AM(EFed AM,e.g.ultrasonic,electromagnetic,and heat)technologies and interlayer plastic deformation-assisted AM(IPDed AM,e.g.laser shock peening,rolling,ultrasonic peening,and friction stir process)technologies.This review covers the influence of external energy fields on the melting,flow,and solidification behavior of materials,and the regulatory effects of interlayer plastic deformation on grain refinement,nucleation,and recrystallization.Furthermore,the role of performance-control-oriented HAM technologies in managing residual stress conversion,metallurgical defect closure,mechanical property improvement,and anisotropy regulation is thoroughly reviewed and discussed.The review concludes with an analysis of future development trends in EFed AM and IPDed AM technologies. 展开更多
关键词 hybrid additive manufacturing in-situ/interlayer plastic deformation auxiliary energy fields microstructure customization mechanical properties enhancement
下载PDF
Arc additive manufacturing of gradient hot forging die with shaped waterways
20
作者 余圣甫 林海涛 邱源 《China Welding》 CAS 2024年第1期27-39,共13页
Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material... Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material hot forging die with high precision,superior per-formance,and conformal cooling channels is developed.This improves the toughness of the die cavity and reduces the working temperature,thereby forming an isothermal field,which is an effective method to enhance the lifespan of the hot forging die.Three kinds of gradient flux-cored wires are designed for the surface of 5CrNiMo steel,and the microstructure and mechanical properties between gradient interfaces were studied.Based on the spatial curved structure of shaped waterways in the hot forging die cavity,a study was conducted on the strategy of partitioned forming for the manufacturing of the die with shaped waterways.In order to avoid interference with the arc gun,the hot for-ging die is divided into four regions,namely the transition region,upper,middle,and lower region,based on a combination of cavity depth and internal U-shaped and quadrilateral structures.The results show that the developed flux-cored wires have good moldability with straight sides of deposited metal under different process parameters and flat surface without cracks,pores and other defects.Under the same working conditions,the life of hot forging die formed by the gradient materials is more than multiple times that of the single material hot forging die,and the temperature gradient field of the shaped waterway die is 7℃/cm smaller than that of traditional straight waterway. 展开更多
关键词 gradient materials shaped waterways arc additive manufacturing mechanical property
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部