Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristi...Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.展开更多
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mec...This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.展开更多
Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great...Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties ofjaponica-indica hybrid rice (JIHR),japonica conventional rice (JCR) and indica hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of I HR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.展开更多
Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residu...Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.展开更多
Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources assoc...Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources associated with rice yield in a rice-wheat rotation system in the lower reaches of the Yangtze River, China. Field experiments were conducted in 2014 and 2015 with two japonica, two indica hybrid, and two japonica-indica hybrid varieties grown under three mechanized planting methods: carpet seedling of mechanical transplanting(CT), mechanical direct seeding(DS), and pot-hole seedling of mechanical transplanting(PT). The rice yield and total dry matter under PT were greater than those under CT and DS methods. Besides, the entire growth duration and daily production showed significant positive relations with rice yield. Compared with CT and DS, the effective accumulated temperature and cumulative solar radiation of rice under PT were higher in phenological phases. In addition, the dry matter/effective accumulated temperature and solar energy utilization of rice under CT and DS were higher during vegetative phase and lower during reproductive and grain filling phases in contrast to PT. The mean daily temperature and mean daily solar radiation in the entire growth duration showed significant positive correlation with rice yield, total dry matter, and harvest index. This study demonstrated that when the mean daily temperature is 〈25.1°C in vegetative phase and 〉20.1°C in grain filling phase, rice yield could be increased by selecting mechanized planting methods. Most varieties under PT method exhibited high yield and climate resources use efficiency compared with CT and DS. In conclusion, the PT method could be a better cultivation measure for high rice yield, accompanied with high temperature and solar radiation use efficiency in a rice-wheat rotation system in the lower reaches of the Yangtze River, China.展开更多
Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of sp...Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source eficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the mi...Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.展开更多
The mechanical grinding method was used to make rice and wheat straw flakes and the properties of the interface of straws before and after grinding were evaluated. The particle boards were prepared using two kinds of ...The mechanical grinding method was used to make rice and wheat straw flakes and the properties of the interface of straws before and after grinding were evaluated. The particle boards were prepared using two kinds of straw flakes, respectively and their physical and mechanical properties were investigated. The results showed that the rice straw was easier to be broken when compared with wheat straw and the inner surface of cells in grinded straws was exposed remarkably. The characteristic peaks of lignin and cellulose on the surface of wheat straw were more significant than rice straw. The free-radical concentrations of straws were increased dramatically after being grinded with heating in the range from I00 ~C to 200 ~C. The surface free energy of straws was also improved after being grinded and the value in wheat straw was higher than that of rice straw, which implies that wheat straw was easier to be bonded than rice straw. The physical and mechanical properties of two kinds of straw particle boards could achieve the requirements of Chinese National Standards of GB 4897.3-2003, while wheat straw particle boards had better properties than those made from rice straws.展开更多
Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential ...Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.展开更多
The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acous...The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.展开更多
The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the stren...The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.展开更多
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly...Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.展开更多
Severe liver dysfunction in pregnancy(SLDP) is rare but serious complications with high mortality rate. This study compared the effectiveness and safety of double-balloon catheter versus intra-amniotic injection of ...Severe liver dysfunction in pregnancy(SLDP) is rare but serious complications with high mortality rate. This study compared the effectiveness and safety of double-balloon catheter versus intra-amniotic injection of ethacridine lactate for the termination of second trimester pregnancy in patients with SLD. A total of 55 patients with indications of labor induction were enrolled and analyzed by retrospective control analysis method. Twenty-three cases adopted Cook double balloon dilation as Cook group, and 32 cases received intra-amniotic injection of ethacridine lactate as EL group. The primary outcome was evaluated by successful abortion rate and the difference in the induction-to-abortion interval. Secondary outcomes included liver function recovery and the frequency of adverse events. Both Cook and EL regimens were effective, with successful abortion rate of 87.0% and 93.8%, respectively(P=0.639). The induction-to-delivery interval was similar between Cook group and EL group(38.1±21.5 vs. 41.3±17.4, P=0.543). The liver disease status was more severe in Cook group than in EL group, but it did not show any significant difference after pregnancy termination between the two groups and the improvement rate also did not show any significant difference. Both treatments were safe and there was no significant difference in bleeding and cervical laceration adverse events between the two groups. Our study firstly compared double-balloon catheter and ethacridine lactate for the induction of labor in women with SLD during second trimester pregnancy.展开更多
Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (D...Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.展开更多
Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar syste...Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun- Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small increase in its velocity. From the point of view of the Sun-Earth- NEO restricted three-body system, it is possible for an NEO whose Jacobian constant is slightly lower than C1 but higher than C3 to be temporarily captured by Earth. When such an NEO approaches Earth, it is possible to change its orbital energy to nearly the zero velocity surface of the three-body system at point L1 and make the NEO become a small satellite of the Earth. Some such NEOs were found; the best example only required a 410 m s^-1 increase in velocity.展开更多
A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecula...A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecular mechanics. Under the small deformation assumption and by the principle of minimum potential energy, the system function was established. The properties of tension and bending of single-walled carbon nanotubes were analyzed. The Young's modulus is about 0.36 TPa nm, which agrees perfectly with the results of previous analysis by other researchers. It is found, for the first time, that the Young's moduli, for Zigzag nanotubes, are different from each other when the system energy was expressed as the sum of two or three individual energy terms in molecular mechanics. Whereas, the Young's moduli were the same for the Armchair nanotubes. It is found, when simulating the bending, that the deflections are closer to the theoretical ones, of the classical elasticity, when the diameter of the carbon nanotube increases.展开更多
The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechani...The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing(MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering usingthe different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPCcomposite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density ata low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) ofthe CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively.展开更多
Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the ...Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.展开更多
By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system wit...By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system with quadratic kinetic en- ergy T and potential energy V. They are extended to solve a gravitational n-body Hamiltonian system that can be split into a Keplerian part H0 and a perturbation part H1 in Jacobi coordinates. It is found that the accuracy of each gradient scheme is greatly superior to that of the standard fourth-order Forest-Ruth symplectic integra- tor in T + V-type Hamiltonian decomposition, but they are both almost equivalent in the mean longitude and the relative position for H0 +//1-type decomposition. At the same time, there are no typical differences between the numerical performances of these gradient algorithms, either in the splitting of T + V or in the splitting of H0 +//1. In particular, compared with the former decomposition, the latter can dra- matically improve the numerical accuracy. Because this extension provides a fast and high-precision method to simulate various orbital motions of n-body problems, it is worth recommending for practical computation.展开更多
基金the National Key Research Program of China(2016YFD0300503)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)+2 种基金the Key Research Program of Jiangsu Province,China(BE2016344)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.
基金supported by the National Natural Science Foundation of China(No.10871034)the Natural Science Foundation Project of Chongqing(No.CSTC20-10BB8270)+1 种基金the Air Force Office of Scientific Research(No.FA9550-08-1-0136)the National Science Foundation(No.OCE-0620464)
文摘This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.
基金The Special Fund for Agro-scientific Research in the Public Interest(201303102)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)+3 种基金the National Key Research Program of China(2016YFD0300503)the Science and Technology Plan of Jiangsu Province,China(BE2015340)the Research Innovation Program for College Graduates of Jiangsu Province,China(KYLX15_1369)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China supported this study
文摘Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties ofjaponica-indica hybrid rice (JIHR),japonica conventional rice (JCR) and indica hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of I HR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.
基金Project was supported by the National Natural Science Foundation of China(Grant No.52165034)Science and Technology Programs of Inner Mongolia(Grant No.2020GG0301)+1 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2019MS05061)Scientific Research Projects of Higher Education of Inner Mongolia Autonomous Region Institutions(Grant No.NJZY20066).
文摘Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.
基金financially supported by grants from the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)the Agricultural Science and Technology Innovation Fund in Jiangsu Province,China(CX(12)1003-09)+3 种基金the National Key Research Program of China(2016YFD0300503)the Science and Technology Plan of Jiangsu Province,China(BE2015340)the Research Innovation Program for College Graduates of Jiangsu Province,China(KYLX15_1369)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources associated with rice yield in a rice-wheat rotation system in the lower reaches of the Yangtze River, China. Field experiments were conducted in 2014 and 2015 with two japonica, two indica hybrid, and two japonica-indica hybrid varieties grown under three mechanized planting methods: carpet seedling of mechanical transplanting(CT), mechanical direct seeding(DS), and pot-hole seedling of mechanical transplanting(PT). The rice yield and total dry matter under PT were greater than those under CT and DS methods. Besides, the entire growth duration and daily production showed significant positive relations with rice yield. Compared with CT and DS, the effective accumulated temperature and cumulative solar radiation of rice under PT were higher in phenological phases. In addition, the dry matter/effective accumulated temperature and solar energy utilization of rice under CT and DS were higher during vegetative phase and lower during reproductive and grain filling phases in contrast to PT. The mean daily temperature and mean daily solar radiation in the entire growth duration showed significant positive correlation with rice yield, total dry matter, and harvest index. This study demonstrated that when the mean daily temperature is 〈25.1°C in vegetative phase and 〉20.1°C in grain filling phase, rice yield could be increased by selecting mechanized planting methods. Most varieties under PT method exhibited high yield and climate resources use efficiency compared with CT and DS. In conclusion, the PT method could be a better cultivation measure for high rice yield, accompanied with high temperature and solar radiation use efficiency in a rice-wheat rotation system in the lower reaches of the Yangtze River, China.
文摘Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source eficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
基金supported by the Science and Technology Projects of Sichuan Province,China,(No.2008GZ0179)
文摘Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.
文摘The mechanical grinding method was used to make rice and wheat straw flakes and the properties of the interface of straws before and after grinding were evaluated. The particle boards were prepared using two kinds of straw flakes, respectively and their physical and mechanical properties were investigated. The results showed that the rice straw was easier to be broken when compared with wheat straw and the inner surface of cells in grinded straws was exposed remarkably. The characteristic peaks of lignin and cellulose on the surface of wheat straw were more significant than rice straw. The free-radical concentrations of straws were increased dramatically after being grinded with heating in the range from I00 ~C to 200 ~C. The surface free energy of straws was also improved after being grinded and the value in wheat straw was higher than that of rice straw, which implies that wheat straw was easier to be bonded than rice straw. The physical and mechanical properties of two kinds of straw particle boards could achieve the requirements of Chinese National Standards of GB 4897.3-2003, while wheat straw particle boards had better properties than those made from rice straws.
文摘Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (GJNY-20-113-03),SHGF-16-19the Fundamental Research Funds for the Central Universities (06500182)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining (EC2021004)Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07)Funds from Humboldt Research Fellowship,Funds from NSFC (52204086).
文摘The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.
基金Project(41072200)supported by the National Natural Science Foundation of ChinaProject(14PJD032)supported by the Shanghai Pujiang Program,China
文摘The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.
基金Project(2010CB635107) supported by the Major State Basic Research Development Program of ChinaProjects(51202064,51472081) supported by the National Natural Science Foundation of China+2 种基金Project(2013CFA085) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010016) supported by Wuhan Youth Chenguang Program of Science and Technology,ChinaProject([2013]2-22) supported by the Open Fund of Key Laboratory of Green Materials for Light Industry of Hubei Province,China
文摘Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.
基金supported by a grant from the National Natural Science Foundation of China(No.81372806)
文摘Severe liver dysfunction in pregnancy(SLDP) is rare but serious complications with high mortality rate. This study compared the effectiveness and safety of double-balloon catheter versus intra-amniotic injection of ethacridine lactate for the termination of second trimester pregnancy in patients with SLD. A total of 55 patients with indications of labor induction were enrolled and analyzed by retrospective control analysis method. Twenty-three cases adopted Cook double balloon dilation as Cook group, and 32 cases received intra-amniotic injection of ethacridine lactate as EL group. The primary outcome was evaluated by successful abortion rate and the difference in the induction-to-abortion interval. Secondary outcomes included liver function recovery and the frequency of adverse events. Both Cook and EL regimens were effective, with successful abortion rate of 87.0% and 93.8%, respectively(P=0.639). The induction-to-delivery interval was similar between Cook group and EL group(38.1±21.5 vs. 41.3±17.4, P=0.543). The liver disease status was more severe in Cook group than in EL group, but it did not show any significant difference after pregnancy termination between the two groups and the improvement rate also did not show any significant difference. Both treatments were safe and there was no significant difference in bleeding and cervical laceration adverse events between the two groups. Our study firstly compared double-balloon catheter and ethacridine lactate for the induction of labor in women with SLD during second trimester pregnancy.
基金Supported by the National Natural Science Foundation of China
文摘Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.
基金supported by the National Natural Science Foundation of China(Grant No 10832004)
文摘Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun- Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small increase in its velocity. From the point of view of the Sun-Earth- NEO restricted three-body system, it is possible for an NEO whose Jacobian constant is slightly lower than C1 but higher than C3 to be temporarily captured by Earth. When such an NEO approaches Earth, it is possible to change its orbital energy to nearly the zero velocity surface of the three-body system at point L1 and make the NEO become a small satellite of the Earth. Some such NEOs were found; the best example only required a 410 m s^-1 increase in velocity.
文摘A modified molecular structural mechanics method, based on molecular mechanics and similar to the finite element method, was developed. The energy of a system was expressed by the force field functions of the molecular mechanics. Under the small deformation assumption and by the principle of minimum potential energy, the system function was established. The properties of tension and bending of single-walled carbon nanotubes were analyzed. The Young's modulus is about 0.36 TPa nm, which agrees perfectly with the results of previous analysis by other researchers. It is found, for the first time, that the Young's moduli, for Zigzag nanotubes, are different from each other when the system energy was expressed as the sum of two or three individual energy terms in molecular mechanics. Whereas, the Young's moduli were the same for the Armchair nanotubes. It is found, when simulating the bending, that the deflections are closer to the theoretical ones, of the classical elasticity, when the diameter of the carbon nanotube increases.
基金This work was supported by the National Natural Science Foundation of China(No.50372041)National“863”Plan(No.2003AA305620).
文摘The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing(MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering usingthe different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPCcomposite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density ata low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) ofthe CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively.
文摘Satellite-to-Satellite tricking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The nature of the problem is also investigated in order to find an effective solution. Several. methods of solution are discussed. The feasibility of the methods is demonstrated by their application to a simulation.
基金supported by the National Natural Science Foundation of China (Grant No. 10873007)supported by the Science Foundation of Jiangxi Education Bureau (GJJ09072)Program for Innovative Research Team of Nanchang University
文摘By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system with quadratic kinetic en- ergy T and potential energy V. They are extended to solve a gravitational n-body Hamiltonian system that can be split into a Keplerian part H0 and a perturbation part H1 in Jacobi coordinates. It is found that the accuracy of each gradient scheme is greatly superior to that of the standard fourth-order Forest-Ruth symplectic integra- tor in T + V-type Hamiltonian decomposition, but they are both almost equivalent in the mean longitude and the relative position for H0 +//1-type decomposition. At the same time, there are no typical differences between the numerical performances of these gradient algorithms, either in the splitting of T + V or in the splitting of H0 +//1. In particular, compared with the former decomposition, the latter can dra- matically improve the numerical accuracy. Because this extension provides a fast and high-precision method to simulate various orbital motions of n-body problems, it is worth recommending for practical computation.