期刊文献+
共找到7,658篇文章
< 1 2 250 >
每页显示 20 50 100
Estimating Mechanical Parameters of Hydrate-Bearing Sediments on Basis of Shear Wave Velocity Under Triaxial Compression
1
作者 DONG Lin LIAO Hualin +4 位作者 LI Yanlong ZHANG Yajuan BU Qingtao HU Gaowei WU Nengyou 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第6期1481-1487,共7页
The strength parameters of hydrate-bearing sediments(HBS)are vital to geological risk assessment and control during drilling and production operations.However,current publications mainly focus on the laboratory evalua... The strength parameters of hydrate-bearing sediments(HBS)are vital to geological risk assessment and control during drilling and production operations.However,current publications mainly focus on the laboratory evaluation of strength parameters through triaxial compression,generating results intrinsically deviating from those obtained through petrophysical modeling.In this study,we developed an integrated apparatus that can simultaneously measure wave velocity and the mechanical behaviors of HBS under triaxial compression conditions.A series of experiments were conducted to analyze correlations between wave velocities and strength parameters.Results reveal that the P-and S-wave velocities considerably increase with hydrate saturation and are affected by effective confining pressure.Failure strength and elastic modulus are correlated with P-wave velocity.Finally,semi-empirical models are developed to predict strength parameters based on P-wave velocity and extended to establish longitudinal profiles for strength parameters of hydrate reservoirs in the Nankai Trough.This study offers insights into the acoustic properties of HBS under stress states for the prediction of mechanical parameters during natural gas hydrate development. 展开更多
关键词 natural gas hydrate triaxial shearing test wave velocity mechanical parameter longitudinal profile
下载PDF
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
2
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm BP neural network physical and mechanical parameters surrounding rock direct-back analysis
下载PDF
Experimental study on the interrelation of multiple mechanical parameters in overburden rock caving process during coal mining in longwall panel 被引量:1
3
作者 Daixin Deng Hongwei Wang +2 位作者 Lili Xie Zeliang Wang Jiaqi Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期265-289,共25页
In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of th... In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine. 展开更多
关键词 Overburden rock caving Multiple mechanical parameters Interrelation characterization Precursor information
下载PDF
Numerical method to determine mechanical parameters of engineering design in rock masses 被引量:1
4
作者 薛廷河 项贻强 郭发忠 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期884-889,共6页
This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of... This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium;and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. Theexperimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Δ and the uniaxial pressure-resistant strength σc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice. 展开更多
关键词 Continuous micro-element Orthogonally-jointed rock Engineering in rock masses mechanical parameters
下载PDF
Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al–Si alloy castings made in sand and Fe–Cr slag molds
5
作者 I.Narasimha Murthy J.Babu Rao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期784-793,共10页
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sa... The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds. 展开更多
关键词 silica sand ferrochrome slag alloy castings secondary dendrite arm spacing mechanical properties
下载PDF
Mechanical properties of friction stir welded armor grade Al-Zn-Mg alloy joints 被引量:6
6
作者 C.SHARMA V.UPADHYAY +1 位作者 D.K.DWIVEDI P.KUMAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期493-506,共14页
The influence of different welding speeds and rotary speeds on the formation and mechanical properties of friction stirweld joints of armor grade aluminum alloy was presented.The developed weld joints were characteriz... The influence of different welding speeds and rotary speeds on the formation and mechanical properties of friction stirweld joints of armor grade aluminum alloy was presented.The developed weld joints were characterized by bend tests,micro-hardness tests,tensile tests,optical and scanning electron microscopies.Mechanical properties(i.e.,micro-hardness,ultimatetensile strength and elongation to fracture)increased with the increase in rotary speed or decrease in welding speed.The effect ofwelding speed on micro-hardness of heat affected zones was more profound than the rotary speeds.The welding speeds and rotaryspeeds influenced the mechanical properties and their effects on various mechanical properties of the friction stir welded joints canbe predicted with the help of regression models. 展开更多
关键词 friction stir welding welding parameters mechanical properties FRACTOGRAPHY regression modeling
下载PDF
Fast determination of meso-level mechanical parameters of PFC models 被引量:4
7
作者 Guo Jianwei Xu Guoan +1 位作者 Jing Hongwen Kuang Tiejun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期157-162,共6页
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test... To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models. 展开更多
关键词 Particle flow code Meso-level mechanical parameter Macroscopic property Orthogonal test Intelligent prediction
下载PDF
Modeling the Force-Velocity Relationship in Arm Movement 被引量:1
8
作者 Ahti Rahikainen Janne Avela Mikko Virmavirta 《World Journal of Mechanics》 2012年第2期90-97,共8页
Modeling the force-velocity dependence of a muscle-tendon unit has been one of the most interesting objectives in the field of muscle mechanics. The so-called Hill’s equation [1,2] is widely used to describe the forc... Modeling the force-velocity dependence of a muscle-tendon unit has been one of the most interesting objectives in the field of muscle mechanics. The so-called Hill’s equation [1,2] is widely used to describe the force-velocity relationship of muscle fibers. Hill’s equation was based on the laboratory measurements of muscle fibers and its application to the practical measurements in muscle mechanics has been problematic. Therefore, the purpose of this study was to develop a new explicit calculation method to determine the force-velocity relationship, and test its function in experimental measurements. The model was based on the motion analysis of arm movements. Experiments on forearm rotations and whole arm rotations were performed downwards and upwards at maximum velocity. According to the present theory the movement proceeds as follows: start of motion, movement proceeds at constant maximum rotational moment (Hypothesis 1), movement proceeds at constant maximum power (Hypothesis 2), and stopping of motion. Theoretically derived equation, in which the motion proceeds at constant maximum power, fitted well the experimentally measured results. The constant maximum rotational moment hypothesis did not seem to fit the measured results and therefore a new equation which would better fit the measured results is needed for this hypothesis. 展开更多
关键词 Muscle Mechanics Muscle Power Force-Velocity Relationship arm Movement
下载PDF
End Point Force Control of a Flexible Timoshenko Arm
9
作者 Minoru Sasaki Kouki Nagaya +2 位作者 Takahiro Endo Kojiro Matsushita Satoshi Ito 《Journal of Computer and Communications》 2015年第11期106-112,共7页
This paper discusses a force control problem for a flexible Timoshenko arm. The effect of shear deformation and the effect of rotary inertia are considered in Timoshenko beam theory. Most of the research about force c... This paper discusses a force control problem for a flexible Timoshenko arm. The effect of shear deformation and the effect of rotary inertia are considered in Timoshenko beam theory. Most of the research about force control of the flexible arm is based on Euler Bernoulli beam theory. There are a few researches about force control of the flexible arm using Timoshenko beam theory. The aim of the force control is to control the contact force at the contact point. To solve this problem, we propose a simple controller using Timoshenko beam theory. Finally, we describe simulation results using a numerical inversion of Laplace transform carried out to investigate the validity of the proposed controller for the force control problem. The results of the time response show the transverse displacement, the angle of deflection, the slider position, the rotational angle and the contact force toward the desired their values. 展开更多
关键词 FLEXIBLE arm TIMOSHENKO Beam Theory Force CONTROL Distributed Parameter Systems CONTROL LAPLACE TRANSFORM
下载PDF
The optimization method of industrial robot arm structure based on green manufacturing technology
10
作者 MA Hao-wei Mohd Zamri ZAINON 《Ecological Economy》 2021年第1期40-47,共8页
In order to realize the optimal design of the industrial robot arm structure,an optimization method of the industrial robot arm structure based on green manufacturing technology is proposed.The stability of arm struct... In order to realize the optimal design of the industrial robot arm structure,an optimization method of the industrial robot arm structure based on green manufacturing technology is proposed.The stability of arm structure parameter acquisition can be controlled.The quantitative adjustment model of structural optimization parameters is constructed.The differential fusion control of the arm structure is realized.This paper analyzes the structure parameter law of the robot arm.We use dynamic parameter prediction and output torque parameter compensation method to control the arm structure.According to the adaptive iterative processing results,the arm structure parameter identification is realized.According to the identification results,the cutting parameter optimization method is adopted for the analytical control of the arm structure,and finally the optimized design of the industrial robot arm structure is realized through the green manufacturing technology.The simulation test results show that for the accuracy of the industrial robot arm structure design,this method is better,the output stability is higher,and the arm motion trajectory has a low deviation from the actual motion trajectory,which improves the optimization control and design capabilities of the industrial robot arm structure. 展开更多
关键词 green manufacturing technology industrial robots arm structure yield parameter quantitative adjustment model Motion track
下载PDF
Development and Interfacing PAMA6 Robotic Arm through Simulator Developed for the Kinematics Analysis
11
作者 Praveen Malav Amit Patwardhan Rabinder Henry 《通讯和计算机(中英文版)》 2010年第12期57-62,共6页
关键词 运动学分析 机器人手臂 通信接口 模拟器 开发 直流伺服电机 关节间隙 机器人运动学
下载PDF
Role of processing parameters on relative density,microstructure and mechanical properties of selective laser melted titanium alloy
12
作者 Tian-yu Liu Bo-liang Liu +4 位作者 Jiao-jiao Cheng Shi-bing Liu Kun Shi Hong-yu Liu Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第6期676-684,共9页
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A... The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts. 展开更多
关键词 selective laser melting processing parameter Ti-6Al-2Zr-1Mo-1V titanium alloy relative density MICROSTRUCTURE mechanical properties
下载PDF
Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy 被引量:7
13
作者 湛利华 李炎光 黄明辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2232-2238,共7页
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan... A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix. 展开更多
关键词 aluminum alloy creep aging behavior age hardening mechanical property MICROSTRUCTURE process parameter
下载PDF
BP Neural Network of Continuous Casting Technological Parameters and Secondary Dendrite Arm Spacing of Spring Steel 被引量:8
14
作者 HANG Li-hong WANG Ai-guo +2 位作者 TIAN Nai-yuan ZHANG Wei-cun FAN Qiao-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第8期25-29,共5页
The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of techno... The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of technological parameters of continuous casting process directly impacts the property of slab. The relationships between continuous casting technological parameters and cooling rate of slab for spring steel were built using BP neural network model, based on which, the relevant secondary dendrite arm spacing was calculated. The simulation calculation was also carried out using the industrial data. The simulation results show that compared with that of the traditional method, the absolute error of calculation result obtained with BP neural network model reduced from 0. 015 to 0. 0005, and the relative error reduced from 6, 76 % to 0.22 %. BP neural network model had a more precise accuracy in the optimization of continuous casting technological parameters. 展开更多
关键词 continuous casting technological parameter secondary dendrite arm spacing BP neural network
原文传递
An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay 被引量:5
15
作者 Xing Huang DongQing Li +1 位作者 Feng Ming JianHong Fang 《Research in Cold and Arid Regions》 CSCD 2013年第5期596-602,共7页
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to... To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength. 展开更多
关键词 artificially frozen soil frozen soil strength ultrasonic wave velocity critical water content dynamic elastic mechanical parameters
下载PDF
Dynamic Bayesian identification of mechanical parameters of multi-cell curve box girder based on conjugate gradient theory
16
作者 ZHANG Jian ZHOU ChuWei LIN Jing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第4期1057-1065,共9页
For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical p... For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical parameters of multi-cell curve box girder was achieved with Bayesian statistical theory. The corresponding formulas of dynamic Bayesian expectation and variance were obtained. After the one-dimensional optimization search method for the automatic determination of step length of the mechanical parameter was put forward, the optimization identification calculative formulas were also obtained by adopting conjugate gradient method. Then the steps of dynamic Bayesian identification of mechanical parameters of multi-cell curve box girder were stated in detail. Through analysis of a classic example, the dynamic Bayesian identification processes of mechanical parameters are steadily convergent to the true values, which proves that dynamic Bayesian theory and conjugate gradient theory are suitable for the identification calculation and the compiled procedure is correct. It is of significance that the foreknown information of mechanical parameters should be set with reliable practical engineering experiences instead of arbitrary selection. 展开更多
关键词 mechanical parameters multi-cell curve box girder Bayesian identification conjugate gradient theory
原文传递
Optimization of the key position parameters for tractor steering wheel based on a driver’s arm muscle load analysis
17
作者 Hongmei Xu Hao Yang +4 位作者 Yujun Shang Yinpei Zhang Zhangfen Liu Qichao Wang Guozhong Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第5期236-247,共12页
Steering wheel is the most frequently used manual device in tractors,whose position directly affects the handling comfort of the driver and fatigue degree of the arm muscles.In this study,the biomechanical modelling s... Steering wheel is the most frequently used manual device in tractors,whose position directly affects the handling comfort of the driver and fatigue degree of the arm muscles.In this study,the biomechanical modelling software AnyBody was used for an inverse kinetics analysis of the rotation process of tractor steering wheel,calculate the muscle activation degree of the driver’s arm and compare it with the calculated results of surface EMG tests to verify the reliability of the biomechanical model.Based on the biomechanical model,the effects of three position parameters(steering wheel inclination,front-back distance,and upper-lower height)on the activation degree of the driver’s arm muscles were evaluated.The results demonstrated that steering wheel inclination has the most significant effect on the degree of muscle activation,followed by the upper-lower height and then front-back distance.Considering the interaction among factors,a regression orthogonal test was designed,and the test results revealed that the minimum muscle activation(1.2887)can be obtained with the steering wheel inclination of 31°,front-back distance of 431 mm and upper-lower height of 375 mm.The findings can provide a reference for optimizing the structure and position parameters of tractor steering wheels. 展开更多
关键词 TRACTOR steering wheel driver’s arm biomechanical characteristics position parameter optimization
原文传递
Design of a novel 3-DOF hybrid mechanical arm 被引量:8
18
作者 LI YanBiao JIN ZhenLin JI ShiMing 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第12期3592-3600,共9页
Parameter optimization for a novel 3-DOF hybrid mechanical arm was presented by using a statistics method called the statistics parameters optimization method based on index atlases.Several kinematics and mechanics pe... Parameter optimization for a novel 3-DOF hybrid mechanical arm was presented by using a statistics method called the statistics parameters optimization method based on index atlases.Several kinematics and mechanics performance evaluation indices were proposed and discussed,according to the kinematics and mechanics analyses of the mechanical arm.Considering the assembly technique,a prototype of the 3-DOF hybrid mechanical arm was developed,which provided a basis for applications of the 3-DOF hybrid mechanical arm.The novel 3-DOF hybrid mechanical arm can be applied to the modern industrial fields requiring high stiffness,lower inertia and good technological efficiency.A novel 6-DOF hybrid humanoid mechanical arm was built,in which the present mechanical arm was connected with a spherical 3-DOF parallel manipulator. 展开更多
关键词 3-DOF HYBRID mechanical arm KINEMATICS ANALYSES performance evaluation INDEX PARAMETER optimization
原文传递
Back analysis of mechanical parameters of roller compacted concrete dam 被引量:8
19
作者 GU ChongShi 1,2,3,LI Bo 1,XU GuangLei 4 &YU Hong 1,2,3 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China 2College of Water Conservancy Hydropower,Hohai University,Nanjing 210098,China +1 位作者 3National Engineering Research Center of Water Resources Engineering Safety,Efficient Utilization and Nanjing 210098,China 4 Nanjing Hydraulic Research Institute,Nanjing 210029,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第3期848-853,共6页
In view of the diversity and complexity of mechanical parameters of roller compacted concrete dam(RCCD),the uniform design method,partial least-squares regression(PLS)and least squares support vector machine(LSSVM)wer... In view of the diversity and complexity of mechanical parameters of roller compacted concrete dam(RCCD),the uniform design method,partial least-squares regression(PLS)and least squares support vector machine(LSSVM)were applied to the back analysis of RCCD with the use of the complex nonlinear relationship between dam mechanical parameters and dam displacements.During the process of back analysis,the initial samples of parameters were designed with uniform design method.Then,a transversely isotropic model of RCCD was established by MSC.Marc software.Through this model,training samples of LSSVM model could be obtained.And then,the complex nonlinear relationship between relative values of hydraulic components of dam displacements and mechanical parameters was established.Finally,actual relative values of dam hydraulic components are isolated from the measured data of dam displacements by using PLS.By inputting the isolated relative values into LSSVM model,the back analysis values of RCCD mechanical parameters can be obtained.The example analysis showed that mechanical parameters obtained by the above-mentioned back analysis method are reasonable,and the back analysis method is feasible. 展开更多
关键词 ROLLER COMPACTED CONCRETE DAM mechanical parameters BACK analysis
原文传递
Study on mechanical parameters of fractured rock masses 被引量:5
20
作者 CHEN WeiZhong 1,2,YANG JianPing 1,TAN XianJun 1 &YU HongDan 1 1 State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China 2 Research Center of Geotechnical and Structural Engineering,Shandong University,Jinan 250061,China 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第S1期140-146,共7页
The equivalent strength parameters of fractured rock masses are prerequisite for stability analysis of geotechnical engineering projects constructed in fractured rock masses which are encountered frequently in western... The equivalent strength parameters of fractured rock masses are prerequisite for stability analysis of geotechnical engineering projects constructed in fractured rock masses which are encountered frequently in western china.Based on generated mesh of fractured rock masses,combined with statistic damage constitutive model of intact rock and damage model of structural plane,progressive failure of fractured rock masses is studied using finite element method(FEM) .Furthermore,Scale effect and anisotropy of compressive strength of fractured rock masses are studied.Study results show that the strength decreases and tend towards stability rapidly from intact rock to fractured rock masses,and the anisotropy of strength of fractured rock masses is not significant.At last,based on numerical simulation conducted on 10 m scale rock masses under different confining pressures,the equivalent strength parameters of fractured rock masses are gained and the results are compared with Hoek-Brown criteria.The method developed is helpful for determination of strength parameters of fractured rock masses. 展开更多
关键词 ROCK MECHANICS fractured ROCK MASSES EQUIVALENT strength parameters FINITE element method scale effect ANISOTROPY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部