期刊文献+
共找到3,009篇文章
< 1 2 151 >
每页显示 20 50 100
Thermo-hydro-mechanical-air coupling finite element method and its application to multi-phase problems 被引量:3
1
作者 Feng Zhang Yonglin Xiong +1 位作者 Sheng Zhang Bin Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期77-98,共22页
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as... In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure. 展开更多
关键词 Multi-phase Thermo-hyd ro-mechanical-air (THMA) finite element method (FEM) finite deformation Constitutive model Unified field equations
下载PDF
Stochastic Finite Element Method for Mechanical Vibration Based on Conjugate Gradient(CG)
2
作者 MO Wen-hui 《International Journal of Plant Engineering and Management》 2008年第3期128-134,共7页
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput... When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods. 展开更多
关键词 stochastic finite element method(SFEM) mechanical vibration conjugate gradient(CG)
下载PDF
Fracture properties of epoxy asphalt mixture based on extended finite element method 被引量:7
3
作者 钱振东 胡靖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3335-3341,共7页
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi... Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃. 展开更多
关键词 epoxy asphalt mixture MICROSTRUCTURE extended finite element method fracture morphology mechanical response
下载PDF
Application of scaled boundary finite element method in static and dynamic fracture problems 被引量:2
4
作者 Zhenjun Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期243-256,共14页
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe... The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods. 展开更多
关键词 Scaled boundary finite element method Dynamic stress intensity factors Mixed-mode crack propagation Remeshing algorithm Linear elastic fracture mechanics
下载PDF
Conversion between solid and beam element solutions of finite element method based on meta-modeling theory:development and application to a ramp tunnel structure 被引量:1
5
作者 JASC Jayasinghe M. Hori +2 位作者 MR Riaz MLL Wijerathne T Ichimura 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期297-309,共13页
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ... In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end. 展开更多
关键词 meta-modeling theory finite element method solid and beam element models continuum mechanics structural mechanics
下载PDF
APPLICATION OF STOCHASTIC FINITE ELEMENT METHOD TO STRENGTH AND STABILITY ANALYSIS OF EARTH DAMS
6
作者 Yongjian, Ren Guoqing, Wang +1 位作者 Derong, Wei Jizhong, Shi 《Acta Mechanica Solida Sinica》 SCIE EI 1994年第1期80-86,共7页
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b... This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described. 展开更多
关键词 Accident prevention Failure (mechanical) finite element method Random processes RELIABILITY Stability STATISTICS Strength of materials Stress analysis Structural analysis Water levels
下载PDF
ON VIBRATION OF HEMISPHERICAL SHELL BY USING FINITE ELEMENT METHOD
7
作者 樊尚春 刘广玉 王振均 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第12期1169-1175,共7页
This paper establishes the finite element equation for the spherical shell. The resonant frequencies of the above shell under different boundary conditions are also discussed and calculated.
关键词 finite element method Vibrations (mechanical)
下载PDF
Interval Analysis of the Finite Element Method for Stochastic Structures
8
作者 刘长虹 刘筱玲 陈虬 《Journal of Southwest Jiaotong University(English Edition)》 2004年第1期46-48,共3页
A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FE... A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FEM software. In some cases, the amount of solutions in stochastic structures is nearly as many as that in the traditional structural problems. In addition, a new method to evaluate the failure probability of structures is presented for the needs of the modern engineering design. 展开更多
关键词 finite element method RANDOM Confidence interval Stochastic structure MECHANICS
下载PDF
Analysis of mechanical performance of braided esophageal stent structure and its wires
9
作者 倪晓宇 王果 +1 位作者 龙志红 潘长网 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期457-463,共7页
This paper aims to find the relationship between the structural parameters and the radial stiffness of the braided stent and to understand the stress distribution law of the wires. According to the equation of the spa... This paper aims to find the relationship between the structural parameters and the radial stiffness of the braided stent and to understand the stress distribution law of the wires. According to the equation of the space spiral curve, a three-dimensional parametrical geometrical model is constructed. The finite element model is built by using the beam-beam contact elements and 3D beam elements. The constituent nitinol wires are assumed to be linear elastic material. The finite element analysis figures out that the radial stiffness of the stent and the stress distribution of the wires are influenced by all the structural parameters. The helix pitch of the wires is the most important factor. Under the condition of the same load and other structural parameters remaining unchanged, when the number of wires is 24, the stress of the wire crosssection is at the minimum. A comparison between the vitro experimental results and the analytical results is conducted, and the data is consistent, which proves that the current finite element model can be used to appropriately predict the mechanical performance of the braided esophageal stents. 展开更多
关键词 braided esophageal stent finite element mechanical performance radial stiffness WIRE
下载PDF
Compression Mechanical Performance Simulation and Parameter Optimization of Degradable Ureteral Stent Based on ABAQUS 被引量:1
10
作者 刘璐 刘肖燕 郝矿荣 《Journal of Donghua University(English Edition)》 CAS 2023年第1期1-7,共7页
The compression performance of a degradable ureteral stent is analyzed and the parameters are optimized by a finite element modeling method.The degradable ureteral stent explored in this paper is developed from poly(g... The compression performance of a degradable ureteral stent is analyzed and the parameters are optimized by a finite element modeling method.The degradable ureteral stent explored in this paper is developed from poly(glycolic acid)(PGA)and poly(lactic-co-glycolic acid)(PLGA)degradable materials.Based on the actual measurement of fabric structure parameters,the three-dimensional model of the stent is established with the help of the modeling software.The finite element analysis software is used to simulate the compression process of the degradable ureteral stent.The parameters of materials,interactions and boundary conditions are set according to the compression environment of the stent for modeling and simulation.On this basis,the friction coefficient of yarns,the yarn radius,and the braided angle of the stent are further compared.The comparison test is carried out by a single variable.The experimental results show that the change of yarn friction coefficient has little influence on the compressive stress,while the yarn radius and the braided angle of the stent have a great influence on the compressive stress. 展开更多
关键词 degradable ureteral stent geometric model compression performance finite element modeling method
下载PDF
COUPLED THERMO-MECHANICAL ANALYSIS OF FUNCTIONALLY GRADIENT WEAK/MICRO-DISCONTINUOUS INTERFACE WITH GRADED FINITE ELEMENT METHOD 被引量:1
11
作者 Zhiwen Gao Kang Yong Lee Youhe Zhou 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第4期331-341,共11页
Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-m... Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is. 展开更多
关键词 functionally graded material thermo-mechanical analysis weak/micro discontin-uous graded finite element method
原文传递
A COMPARATIVE STUDY OF THE OPENING AND CLOSING PROCESS OF TWO TYPES OF MECHANICAL HEART VALVES USING ALE FINITE ELEMENT METHOD
12
作者 陈大鹏 张建海 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第4期299-308,共10页
Using arbitrary Lagrangian-Eulerian(ALE)finite element method,this paper made a comparative study of the opening and closing behaviour of a downstream directional valve(DDM)and a St.Jude medical valve(SJM)through a tw... Using arbitrary Lagrangian-Eulerian(ALE)finite element method,this paper made a comparative study of the opening and closing behaviour of a downstream directional valve(DDM)and a St.Jude medical valve(SJM)through a two dimensional model of mechanical valve-blood interaction in which the valve is considered as a rigid body rotating around a fixed point,and the blood is simplified as viscous incompressible fluid It's concluded that:(1)Compared with SJM valve, DDM valve opens faster and closes the more gently.(2)The peak badk-flow-flow of DDM is smaller than that of SJM.The present investigation shows that being a better analogue of natural valve,DDM has a brighter potential on its durability than SJM. 展开更多
关键词 artificial mechanical valve ALE finite element method fluidsolid interaction
下载PDF
Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method
13
作者 Farhoud KALATEH Farideh HOSSEINEJAD 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第2期387-410,共24页
The purpose of the present study was to develop a fuzzy finite element method,for uncertainty quantification of saturated soil properties on dynamic response of porous media,and also to discrete the coupled dynamic eq... The purpose of the present study was to develop a fuzzy finite element method,for uncertainty quantification of saturated soil properties on dynamic response of porous media,and also to discrete the coupled dynamic equations known as u-p hydro-mechanical equations.Input parameters included fuzzy numbers of Poisson's ratio,Young's modulus,and permeability coefficient as uncertain material of soil properties.Triangular membership functions were applied to obtain the intervals of input parameters in five membership grades,followed up by a minute examination of the effects of input parameters uncertainty on dynamic behavior of porous media.Calculations were for the optimized combinations of upper and lower bounds of input parameters to reveal soil response including displacement and pore water pressure via fuzzy numbers.Fuzzy analysis procedure was verified,and several numerical examples were analyzed by the developed method,including a dynamic analysis of elastic soil column and elastic foundation under ramp loading.Results indicated that the range of calculated displacements and pore pressure were dependent upon the number of fuzzy parameters and uncertainty of parameters within equations.Moreover,it was revealed that for the input variations looser sands were more sensitive than dense ones. 展开更多
关键词 fuzzy finite element method saturated soil hydro mechanical coupled equations coupled analysis uncertainty analysis
原文传递
Study of the influence of pavement unevenness on the mechanical response of asphalt pavement by means of the finite element method 被引量:3
14
作者 Pengfei Liu Visaagan Ravee +1 位作者 Dawei Wang Markus Oeser 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第3期169-180,共12页
Pavement unevenness affects the vehicle operating cost, speed, riding comfort, safety, pavement service life and etc. The current mechanistic-empirical (M-E) design procedure of asphalt pavements is based on the com... Pavement unevenness affects the vehicle operating cost, speed, riding comfort, safety, pavement service life and etc. The current mechanistic-empirical (M-E) design procedure of asphalt pavements is based on the computational model of a flat pavement instead of uneven pavement as it is the case in reality. In this paper, a tire-pavement-interaction FE model is developed to investigate the influence of pavement unevenness on the mechanical responses of asphalt pavements. For both winter and summer conditions, the strain at the bottom of the asphalt layer due to the tire load is found to decrease as the wavelength of the unevenness increases. Moreover, the strain is larger at lower speeds and decreases as the speed increases. It is found that the stress levels are higher in summer conditions than under winter conditions for the same pavement irrespective of wavelength. The fatigue life increases with increase in speed of the tire for a pavement and also increases with increase in the wavelength of the pavement unevenness. The results indicate that pavement unevenness significantly influence the mechanical responses of asphalt pavements and thus influences the service life of asphalt pavements. As a result, the current M-E design algorithm of asphalt pavements should be modified to consider the pavement unevenness to allow better design processes for asphalt pavement. 展开更多
关键词 PAVEMENT Unevenness MECHANICS finite element method (YEM) Interaction
原文传递
Mechanical analysis of flexible integrated energy storage devices under bending by the finite element method
15
作者 Zishun Yuan Minjie Yao +4 位作者 Nannan Zhang Shuai Wang Xianhong Rui Qichun Zhang Zhiqiang Niu 《Science China Materials》 SCIE EI CAS CSCD 2021年第9期2182-2192,共11页
Although a great deal of studies focus on the design of flexible energy storage devices(ESDs),their mechanical behaviors under bending states are still not sufficiently investigated,and the understanding of the corres... Although a great deal of studies focus on the design of flexible energy storage devices(ESDs),their mechanical behaviors under bending states are still not sufficiently investigated,and the understanding of the corresponding structural conversion therefore still lags behind.Here,we systematically and thoroughly investigated the mechanical behaviors of flexible all-in-one ESDs under bending deformation by the finite element method.The influences of thicknesses,Young’s moduli and Poisson’s ratios of electrodes and electrolyte were taken into account.Visualized and quantified results including displacement,strain energy,von Mises stress,and tensile,compressive,and interfacial shear stress are demonstrated and analyzed.Based on these results,significant conclusions are drawn for the design of flexible integrated ESDs with robust mechanical properties.This work will provide guidance for the design of ESDs with high flexibility. 展开更多
关键词 energy storage devices ALL-IN-ONE FLEXIBLE finite element method mechanical analysis
原文传递
MODE III 2-D FRACTURE ANALYSIS BY THE SCALED BOUNDARY FINITE ELEMENT METHOD
16
作者 Shenshen Chen Qinghua Li +1 位作者 Yinghua Liu Zhiqing Xue 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第6期619-628,共10页
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. Thi... The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique that combines the advantages of the finite element method and the boundary element method with unique properties of its own. This method has proven very efficient and accurate for determining the stress intensity factors (SIFs) for mode I and mode II two-dimensional crack problems. One main reason is that the SBFEM has a unique capacity of analytically representing the stress singularities at the crack tip. In this paper the SBFEM is developed for mode III (out of plane deformation) two-dimensional fracture anMysis. In addition, cubic B-spline functions are employed in this paper for constructing the shape functions in the circumferential direction so that higher continuity between elements is obtained. Numerical examples are presented at the end to demonstrate the simplicity and accuracy of the present approach for mode Ⅲ two-dimensional fracture analysis. 展开更多
关键词 fracture mechanics scaled boundary finite element method mode stress in- tensity factors
原文传递
ALE FINITE ELEMENT ANALYSIS OF THE OPENING AND CLOSING PROCESS OF THE ARTIFICIAL MECHANICAL VALVE
17
作者 张建海 陈大鹏 邹盛铨 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第5期403-412,共10页
Employing arbitrary Lagrangian-Eulerian (ALE) finite element method, this poper studies the opening and closing process of a St. Jude medical valve through a two-dimensional model of the mechanical valve-blood interac... Employing arbitrary Lagrangian-Eulerian (ALE) finite element method, this poper studies the opening and closing process of a St. Jude medical valve through a two-dimensional model of the mechanical valve-blood interaction in which the valve is regarded as a rigid body rotating around a fixed point, and foe blood is simplified as viscous incompressible Newtonian fluid. The numerical analysis of the opening and closing behaviour of as St. Jude valve suggested that: 1. The whole opening and closing process of an artificial mechanical valve is consisted of four phases: (1) Opening phase; (2) Opening maintenance phase; (3) Closing phase; (4) Closing maintenance phase. 2. The St. Jude medical valve closes with prominent regurgitat which results in water-hammer effect. 3. During the opening and closing process of the St. Jude valve,high shear stresses occur in the middle region of the two leaflets and on the valve ring. The present model has made a breakthrough on the coupling computational analysis considering the interactive movement of the valve and blood. 展开更多
关键词 artificial mechanical valve ALE finite element method fluidsolid interaction
下载PDF
Structural characteristics of cement-stabilized soil bases with 3D finite element method
18
作者 Yunfeng PENG Yunlong HE 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第4期428-434,共7页
Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behavior... Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases. 展开更多
关键词 cement-stabilized soil semi-rigid base elastic-plastic finite element method structure characteristic mechanical response
原文传递
Extraction of Stress Intensity Factors by Using the P-Version Finite Element Method and Contour Integral Method
19
作者 Jianming Zhang Jun Chen Liang Wu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第6期836-850,共15页
The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the e... The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability. 展开更多
关键词 Fracture mechanics Stress intensity factors P-version finite element method Contour integral method
原文传递
Nonlinear Finite Element Method Considering Martensite Plasticity for Shape Memory Alloy Structure
20
作者 ZHOU Bo KANG Zetian +1 位作者 WANG Zhiyong XUE Shifeng 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第6期774-785,共12页
This work presents a nonlinear finite element method to simulate the macroscopic mechanical responses and the effects of martensite plasticity in a shape memory alloy(SMA)structure.A linear relationship formulation is... This work presents a nonlinear finite element method to simulate the macroscopic mechanical responses and the effects of martensite plasticity in a shape memory alloy(SMA)structure.A linear relationship formulation is adopted to express the influence of martensite plasticity on the inverse martensitic phase transition of SMA material.Incorporating with a trigonometric-type phase transition evolution law and an exponential-type plastic flow evolution law,an incremental mechanical model with two internal variables is supposed based on the macroscopic experimental phenomena.A nonlinear finite element equation is formulated and solved by the principle of virtual displacement and Newton-Raphson method respectively.By employing the proposed nonlinear finite element method,the uniform tensile bar and three-point bending beam are simulated and analyzed.Results illustrate that the presented nonlinear finite element method is suitable to act as an effective computational tool for the wide applications based on the SMA material considering the effects of martensite plasticity because all material constants related to the method can be obtained from macroscopic experiments. 展开更多
关键词 shape memory alloy(SMA)structure martensite plasticity incremental mechanical model nonlinear finite element method
原文传递
上一页 1 2 151 下一页 到第
使用帮助 返回顶部