The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie...The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.展开更多
The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary cha...The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary challenges that must be addressed.For example,although bredigite(Br)has shown great potential for application in bone tissue engineering,it easily fails in replacement.In the present work,these challenges are addressed by reinforcing the Br matrix with nanosheets of graphene oxide(rGO)that have been reduced by bovine serum albumin(BSA)in order to enhance the mechanical properties and biological behavior.The reduction of graphene oxide by BSA improves the water stability of the nanosheets and provides an electrostatic interaction between theBSA-rGO nanosheets and theBr particles.The high thermal conductivity of theBSA-rGO nanosheets decreases the porosity of the Br by transferring heat to the core of the tablet.Furthermore,the addition of BSA-rGO nanosheets into the Br matrix enhances the adhesion of G-292 cells on the surface of the tablets.These findings suggest that the tablet consisting of BSA-rGO-reinforced Br has encouraging potential for application in bone tissue engineering.展开更多
Denture stomatitis and fungal infection are commonly found in long-time denture wearer. Ionic liquids have been used as plasticizer and also possess antimicrobial activity. In this study, ionic liquid in form of 1-Dec...Denture stomatitis and fungal infection are commonly found in long-time denture wearer. Ionic liquids have been used as plasticizer and also possess antimicrobial activity. In this study, ionic liquid in form of 1-Decyl-3-methy-limidazolium chloride was incorporated into tissue conditioner (GC Soft-liner TM) to improve antifungal activity. Physical and mechanical properties were evaluated. Compliance was carried out using penetration test according to ISO 10139-1. Weight change, water absorption and solubility were determined by weight measurement. Conventional and nystatin-incorporated tissue conditioner served as controls. Results showed that ionic liquid-incorporated tissue conditioner significantly decreased fungal formation, both in material suspension and on material surface. The penetration depth of all groups tended to reduce over time with no significant difference at each time point. After water immersion, ionic liquid- and nystatin-incorporated tissue conditioner gained weight while conventional group showed weight loss. The percentage of water absorption of conventional group was significantly lower than ionic liquid and nystatin group, while the percentage of water solubility of nystatin group was significantly higher than others. Our work indicated that antifungal ionic liquid-incorporated tissue conditioner met the standard criteria in terms of material compliance. However, further studies including dynamic viscoelastic property are needed before clinical trial or application.展开更多
Subcutaneous white adipose tissue (sWAT) can be described micromechanically as a foam structure. It is shown that according to this model, mechanical stiffness of this tissue is primarily dependent on the average cell...Subcutaneous white adipose tissue (sWAT) can be described micromechanically as a foam structure. It is shown that according to this model, mechanical stiffness of this tissue is primarily dependent on the average cell size and is almost independent of the dispersion of cell sizes in a local adipocytes’ population. Whereas the influence of natural fat renewal process with a rate of 10% per year must be of minor importance for mechanical properties of sWAT, induced adipocytes’ death can substantially reduce local sWAT stiffness. The sWAT which contains two or more different subpopulations of adipocytes of varying sizes with a spatially clustered structure can demonstrate significant inhomogeneity of their mechanical properties when compared with those of sWAT consisting of a single population of adipocytes. It is proposed that this effect may be an important pathophysiological feature of cellulite. Transformation of the cell shape from quasispherical to wrinkled or elliptical forms makes adipocytes more susceptible to thermo-mechanical stress reducing the strain needed to achieve the local plastic deformation. These mechanical features of sWAT are essential for understanding the mechanisms of different non-invasive and minimal invasive body contouring procedures.展开更多
Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-b...Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.展开更多
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciencesfor regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell ...Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciencesfor regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.展开更多
Tissue biopsies and implant analysis during animal testing or clinical studies are a requirement for development of new surgical materials and procedures. In this paper we report the use of vibrational OCT (VOCT) to e...Tissue biopsies and implant analysis during animal testing or clinical studies are a requirement for development of new surgical materials and procedures. In this paper we report the use of vibrational OCT (VOCT) to evaluate the viscoelastic behavior of tissues, polymeric materials, biofilms, and viscoelastic solutions of macromolecules. Our results suggest that VOCT is a useful technique to characterize the behavior of cellular tissues and biofilms, polymeric implant materials and viscoelastic solutions used in medicine. It is demonstrated that the modulus and resonant frequency squared per unit thickness is a feature that can be used to characterize a variety of tissues. Further work is needed to understand the generalized behavior of synthetic polymers and viscoelastic solutions.展开更多
In the field of bone defect repair,critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials.In this study,c...In the field of bone defect repair,critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials.In this study,carbon nanotubes/polylactic acid/hydroxyapatite(CNTs/PLA/HA)scaffolds with different contents(0.5,1,1.5 and 2 wt.%)of CNTs were prepared by the thermally induced phase separation(TIPS)method.The results revealed that the composite scaffolds had uniform pores with high porosities over 68%and high through performances.The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA,in which the 1.5 wt.%CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of(868.5±12.34)MPa,the tensile elastic modulus of(209.51±12.73)MPa,and the tensile strength of(3.26±0.61)MPa.Furthermore,L929 cells on the 1.5 wt.%CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility.Therefore,it is expected that the 1.5 wt.%CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.展开更多
Laser powder bed fusion(L-PBF)-built triply periodic minimal surface(TPMS)structures are designed by implicit functions and are endowed with superior characteristics,such as adjustable mechanical properties and light-...Laser powder bed fusion(L-PBF)-built triply periodic minimal surface(TPMS)structures are designed by implicit functions and are endowed with superior characteristics,such as adjustable mechanical properties and light-weight features for bone repairing;thus,they are considered as potential candidates for bone scaffolds.Unfortunately,previous studies have mainly focused on different TPMS structures.The fundamental understanding of the differences between strut and sheet-based structures remains exclusive,where both were designed by one formula.This consequently hinders their practical applications.Herein,we compared the morphology,mechanical properties,and biocompatibility of sheet and strut-based structures.In particular,the different properties and in vivo bone repair effects of the two structures are uncovered.First,the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable,and semi-melting powders as well as the ball phenomenon are observed;in comparison,strut-based samples exhibit cracks and thickness shrinking.Second,the mechanical properties indicate that the sheet-based structures have a greater elastic modulus,energy absorption,and better repeatability compared to strut-based structures.Furthermore,layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures,respectively.The in vivo experiment demonstrates enhanced bone tissues in the strut-based scaffold.This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions.展开更多
This paper studied experimentally and theoretically the biomechanical properties of skin with laser influence. Different types of tensile tests of the porcine skin in vitro were conducted to study effect of the laser,...This paper studied experimentally and theoretically the biomechanical properties of skin with laser influence. Different types of tensile tests of the porcine skin in vitro were conducted to study effect of the laser, tensile strength, stress-strain relationship, influence of skin's anisotropy and different regions, repetitive loading and stress-relaxation. A modeling of skin was developed according to the experimental results. The modeling provided insights into the important structure-function relationship in skin tissue with the laser effect. The nonlinear and anisotropic mechanical responses of skin are largely due to varying degree of fiber undulation which is effected by laser and outside forces. By introducing the laser factor into the constitutive modeling, the skin's biomechanical properties and the mechanism of the skin repair with laser were discussed.展开更多
Repairing injured tendon or ligament attachments to bones(enthesis)remains costly and challenging.Despite superb surgical management,the disorganized enthesis newly formed after surgery accounts for high recurrence ra...Repairing injured tendon or ligament attachments to bones(enthesis)remains costly and challenging.Despite superb surgical management,the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations.Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue.Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies.Interestingly,recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force.In this review,we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized.We firstly described compositions,structures and features of natural enthesis with their special mechanical properties highlighted.Stimuli for growth,development and healing of enthesis widely used in popular strategies are systematically summarized.We discuss the fabrication of engineering scaffolds from the aspects of biomaterials,techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy.At last,this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.展开更多
基金Supported by the National Natural Science Foundation of China(No.51175373)New Century Educational Talents Plan of Chinese Education Ministry(No.NCET-10-0625)+1 种基金Key Technology and Development Program of Tianjin Municipal Science and Technology Commission(No.12ZCDZSY10600)Tianjin Key Laboratory of High Speed Cutting&Precision Machining(TUTE)(2013120024001167)
文摘The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.
基金Thiswork is financially supported by IranUniversity of Science and Technology(IUST)and Motamed Cancer Institute(ACECR).
文摘The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary challenges that must be addressed.For example,although bredigite(Br)has shown great potential for application in bone tissue engineering,it easily fails in replacement.In the present work,these challenges are addressed by reinforcing the Br matrix with nanosheets of graphene oxide(rGO)that have been reduced by bovine serum albumin(BSA)in order to enhance the mechanical properties and biological behavior.The reduction of graphene oxide by BSA improves the water stability of the nanosheets and provides an electrostatic interaction between theBSA-rGO nanosheets and theBr particles.The high thermal conductivity of theBSA-rGO nanosheets decreases the porosity of the Br by transferring heat to the core of the tablet.Furthermore,the addition of BSA-rGO nanosheets into the Br matrix enhances the adhesion of G-292 cells on the surface of the tablets.These findings suggest that the tablet consisting of BSA-rGO-reinforced Br has encouraging potential for application in bone tissue engineering.
文摘Denture stomatitis and fungal infection are commonly found in long-time denture wearer. Ionic liquids have been used as plasticizer and also possess antimicrobial activity. In this study, ionic liquid in form of 1-Decyl-3-methy-limidazolium chloride was incorporated into tissue conditioner (GC Soft-liner TM) to improve antifungal activity. Physical and mechanical properties were evaluated. Compliance was carried out using penetration test according to ISO 10139-1. Weight change, water absorption and solubility were determined by weight measurement. Conventional and nystatin-incorporated tissue conditioner served as controls. Results showed that ionic liquid-incorporated tissue conditioner significantly decreased fungal formation, both in material suspension and on material surface. The penetration depth of all groups tended to reduce over time with no significant difference at each time point. After water immersion, ionic liquid- and nystatin-incorporated tissue conditioner gained weight while conventional group showed weight loss. The percentage of water absorption of conventional group was significantly lower than ionic liquid and nystatin group, while the percentage of water solubility of nystatin group was significantly higher than others. Our work indicated that antifungal ionic liquid-incorporated tissue conditioner met the standard criteria in terms of material compliance. However, further studies including dynamic viscoelastic property are needed before clinical trial or application.
文摘Subcutaneous white adipose tissue (sWAT) can be described micromechanically as a foam structure. It is shown that according to this model, mechanical stiffness of this tissue is primarily dependent on the average cell size and is almost independent of the dispersion of cell sizes in a local adipocytes’ population. Whereas the influence of natural fat renewal process with a rate of 10% per year must be of minor importance for mechanical properties of sWAT, induced adipocytes’ death can substantially reduce local sWAT stiffness. The sWAT which contains two or more different subpopulations of adipocytes of varying sizes with a spatially clustered structure can demonstrate significant inhomogeneity of their mechanical properties when compared with those of sWAT consisting of a single population of adipocytes. It is proposed that this effect may be an important pathophysiological feature of cellulite. Transformation of the cell shape from quasispherical to wrinkled or elliptical forms makes adipocytes more susceptible to thermo-mechanical stress reducing the strain needed to achieve the local plastic deformation. These mechanical features of sWAT are essential for understanding the mechanisms of different non-invasive and minimal invasive body contouring procedures.
文摘Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.
文摘Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciencesfor regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.
文摘Tissue biopsies and implant analysis during animal testing or clinical studies are a requirement for development of new surgical materials and procedures. In this paper we report the use of vibrational OCT (VOCT) to evaluate the viscoelastic behavior of tissues, polymeric materials, biofilms, and viscoelastic solutions of macromolecules. Our results suggest that VOCT is a useful technique to characterize the behavior of cellular tissues and biofilms, polymeric implant materials and viscoelastic solutions used in medicine. It is demonstrated that the modulus and resonant frequency squared per unit thickness is a feature that can be used to characterize a variety of tissues. Further work is needed to understand the generalized behavior of synthetic polymers and viscoelastic solutions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12202302,12272253,and 82103147)The support of the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(Grant No.20220006)was also acknowledged with gratitude.
文摘In the field of bone defect repair,critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials.In this study,carbon nanotubes/polylactic acid/hydroxyapatite(CNTs/PLA/HA)scaffolds with different contents(0.5,1,1.5 and 2 wt.%)of CNTs were prepared by the thermally induced phase separation(TIPS)method.The results revealed that the composite scaffolds had uniform pores with high porosities over 68%and high through performances.The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA,in which the 1.5 wt.%CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of(868.5±12.34)MPa,the tensile elastic modulus of(209.51±12.73)MPa,and the tensile strength of(3.26±0.61)MPa.Furthermore,L929 cells on the 1.5 wt.%CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility.Therefore,it is expected that the 1.5 wt.%CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.
基金National Natural Science Foundation of China(Grant Nos.51975073,82172429,51805052)China Scholarship Council(CSC).
文摘Laser powder bed fusion(L-PBF)-built triply periodic minimal surface(TPMS)structures are designed by implicit functions and are endowed with superior characteristics,such as adjustable mechanical properties and light-weight features for bone repairing;thus,they are considered as potential candidates for bone scaffolds.Unfortunately,previous studies have mainly focused on different TPMS structures.The fundamental understanding of the differences between strut and sheet-based structures remains exclusive,where both were designed by one formula.This consequently hinders their practical applications.Herein,we compared the morphology,mechanical properties,and biocompatibility of sheet and strut-based structures.In particular,the different properties and in vivo bone repair effects of the two structures are uncovered.First,the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable,and semi-melting powders as well as the ball phenomenon are observed;in comparison,strut-based samples exhibit cracks and thickness shrinking.Second,the mechanical properties indicate that the sheet-based structures have a greater elastic modulus,energy absorption,and better repeatability compared to strut-based structures.Furthermore,layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures,respectively.The in vivo experiment demonstrates enhanced bone tissues in the strut-based scaffold.This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions.
基金the National Natural Science Foundation of China (No. 51178265)
文摘This paper studied experimentally and theoretically the biomechanical properties of skin with laser influence. Different types of tensile tests of the porcine skin in vitro were conducted to study effect of the laser, tensile strength, stress-strain relationship, influence of skin's anisotropy and different regions, repetitive loading and stress-relaxation. A modeling of skin was developed according to the experimental results. The modeling provided insights into the important structure-function relationship in skin tissue with the laser effect. The nonlinear and anisotropic mechanical responses of skin are largely due to varying degree of fiber undulation which is effected by laser and outside forces. By introducing the laser factor into the constitutive modeling, the skin's biomechanical properties and the mechanism of the skin repair with laser were discussed.
基金supported by grants from the National Natural Science Foundation of China(Grant/Award Number:81901026)the Department of Science and Technology of Sichuan Province(Grant/Award Number:2021YFH0139).
文摘Repairing injured tendon or ligament attachments to bones(enthesis)remains costly and challenging.Despite superb surgical management,the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations.Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue.Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies.Interestingly,recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force.In this review,we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized.We firstly described compositions,structures and features of natural enthesis with their special mechanical properties highlighted.Stimuli for growth,development and healing of enthesis widely used in popular strategies are systematically summarized.We discuss the fabrication of engineering scaffolds from the aspects of biomaterials,techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy.At last,this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.