期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions 被引量:3
1
作者 熊良宵 虞利军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1096-1103,共8页
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas... To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution. 展开更多
关键词 cement mortar mechanical properties relative dynamic elastic modulus compressive strength
下载PDF
Hydraulic properties of dune sand-bentonite mixtures of insulation barriers for hazardous waste facilities 被引量:3
2
作者 M.K.Gueddouda I.Goual +2 位作者 B.Benabed S.Taibi N.Aboubekr 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期541-550,共10页
The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz'method. A pre... The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz'method. A predictive model is developed using a comprehensive database compiled from 30 years' worth of rock tests at the Earth Mechanics Institute(EMI), Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control. 展开更多
关键词 Rock brittleness Elastic properties of rocks mechanical excavation Rock strength
下载PDF
An Average Failure Index Method for the Tensile Strength Prediction of Composite Adhesive-bonded π Joints
3
作者 张建宇 SHAN Meijuan +1 位作者 赵丽滨 FEI Binjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期292-301,共10页
An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure cr... An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering. 展开更多
关键词 joints mechanical properties finite element analysis strength
下载PDF
Microstructure evolution and mechanical properties influenced by austenitizing temperature in aluminum-alloyed TRIP-aided steel 被引量:1
4
作者 Ju-hua Liang Zheng-zhi Zhao +3 位作者 Cai-hua Zhang Di Tang Shu-feng Yang Wei-ning Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1115-1124,共10页
The Fe-0.21C 2.2Mn 0.49Si-1.77A1 transformation induced plasticity (TRIP) aided steel was heat trea- ted at various austenitizing temperatures under both TRiP-aided polygonal ferrite type (TPF) and an- nealed mart... The Fe-0.21C 2.2Mn 0.49Si-1.77A1 transformation induced plasticity (TRIP) aided steel was heat trea- ted at various austenitizing temperatures under both TRiP-aided polygonal ferrite type (TPF) and an- nealed martensite matrix (TAM) processes. The microstructure evolution and their effects on mechanical properties were systematically investigated through the microstructure observation and dilatometric analysis. The microstructure homogeneity is improved in TPF steel heated at a high temperature due to the reduced banded martensite and the increased bainite. Compared with the mechanical properties of the TPF steels, the yield strength and elongation of the TAM steels are much higher, while the tensile strength is lower than that of TPF steels. The stability of intercritical austenite is affected by the heating tempera- ture, and thus the following phase transformation influences the mechanical properties, such as the bain- ite transformation and the precipitation of polygonal ferrite. Obvious dynamic bainite transformation occurs at TAM850, TAM900 and TAM950, More proportion of polygonal ferrite is found in the sample heated at 950 ℃. The bainite transformation beginning at a higher temperature results in the wider bainitic ferrite laths. The more proportion of polygonal ferrite and wide bainitic ferrite laths commonly contribute to the lower strength and better elongation. The uniform microstructure with lath-like morphology and retained austenite with high average carbon content ensures a good mechanical property in TAM850 with the product of strength and elongation of about 28 GPa ·%, 展开更多
关键词 Retained austenite Aluminum Phase transformation High strength steel mechanical property
原文传递
Flexural Strength and Weibull Analysis of Bulk Metallic Glasses 被引量:2
5
作者 Jijun Zhang Diana Estevez +4 位作者 Yuan-Yun Zhao Lishan Huo Chuntao Chang Xinmin Wang Run-Wei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期129-133,共5页
The flexural strength reliability of bulk metallic glasses (BMGs) plates is analyzed using Weibull statistics. The Weibull modulus (m) and characteristic strength (σ0) of the Zr48Cu45AI7 BMG are 34 and 2630 MPa... The flexural strength reliability of bulk metallic glasses (BMGs) plates is analyzed using Weibull statistics. The Weibull modulus (m) and characteristic strength (σ0) of the Zr48Cu45AI7 BMG are 34 and 2630 MPa, respectively, which are much higher than the values of fine ceramics (m 〈 30, σ0 〈 1600 MPa). In particular, the m values obtained by flexural strength and compressive strength statistics of the Mg61Cu28Gd11 BMG are 5 and 33, respectively, indicating that the m values of BMGs are test method dependent, and only the m values obtained by flexural strength statistics can be used to make a convincible comparison with those of ceramics. 展开更多
关键词 Bulk metallic glasses Ceramics Weibu Umodulus Flexural strength mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部