期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
Microstructure evolution,mechanical properties and tailoring of coefficient of thermal expansion for Cu/Mo/Cu clad sheets fabricated by hot rolling 被引量:2
1
作者 Jiang-jiang LIU Ze-jun CHEN +3 位作者 Zhan-song ZHOU Tai-qian MO Peng-ju WANG Wei-jun HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2290-2308,共19页
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)o... The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward. 展开更多
关键词 Cu/Mo/Cu clad sheets roll bonding collaborative deformation mechanical properties coefficient of thermal expansion prediction model
下载PDF
Thermal Expansion and Mechanical Properties of Middle Reinforcement Content SiCp/Al Composites Fabricated by PM Technology 被引量:1
2
作者 郝世明 谢敬佩 +3 位作者 WANG Aiqin WANG Wenyan LI Jiwen SUN Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期660-664,共5页
Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles... Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles distributed uniformly in the composites. The mean linear coefficients of thermal expansion(20-100 ℃) of SiCp/Al composites ranged from 11.6×10-6 to 13.3×10-6 K-1 and decreased with an increase in volume fraction of SiC content. The experimental coeffi cients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 116 to 147, and the modulus increased from 99 to 112 GPa for the corresponding composites. The tensile strengths were higher than 320 MPa, but no signifi cant increasing trend between tensile strength and SiC content was observed. 展开更多
关键词 metal-matrix composites particle-reinforcement coefficient of thermal expansion mechanical properties powder metallurgy
下载PDF
Thermal expansion and mechanical properties of high reinforcement content SiC_(p)/Cu composites fabricated by squeeze casting technology 被引量:5
3
作者 陈国钦 修子扬 +2 位作者 孟松鹤 武高辉 朱德志 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期600-604,共5页
High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores... High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed. 展开更多
关键词 SICP/CU COMPOSITES electronic packaging thermal expansion coefficient mechanical properties
下载PDF
Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions 被引量:3
4
作者 Yong Chen Yinghao Huang +1 位作者 Min Wu Shuo Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1153-1173,共21页
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w... Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design. 展开更多
关键词 Composite phase change material freeze-thaw performance expansive soil thermal properties mechanical properties
下载PDF
Evaluation of the microstructure,thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying 被引量:6
5
作者 Essam B.Moustafa Mohammed A.Taha 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期475-486,共12页
Nano-sized silicon carbide(SiC:0wt%,1wt%,2wt%,4wt%,and 8wt%)reinforced copper(Cu)matrix nanocomposites were manufactured,pressed,and sintered at 775 and 875℃in an argon atmosphere.X-ray diffraction(XRD)and scanning e... Nano-sized silicon carbide(SiC:0wt%,1wt%,2wt%,4wt%,and 8wt%)reinforced copper(Cu)matrix nanocomposites were manufactured,pressed,and sintered at 775 and 875℃in an argon atmosphere.X-ray diffraction(XRD)and scanning electron microscopy were performed to characterize the microstructural evolution.The density,thermal expansion,mechanical,and electrical properties were studied.XRD analyses showed that with increasing SiC content,the microstrain and dislocation density increased,while the crystal size decreased.The coefficient of thermal expansion(CTE)of the nanocomposites was less than that of the Cu matrix.The improvement in the CTE with increasing sintering temperature may be because of densification of the microstructure.Moreover,the mechanical properties of these nanocomposites showed noticeable enhancements with the addition of SiC and sintering temperatures,where the microhardness and apparent strengthening efficiency of nanocomposites containing 8wt%SiC and sintered at 875℃were 958.7 MPa and 1.07 vol%^(−1),respectively.The electrical conductivity of the sample slightly decreased with additional SiC and increased with sintering temperature.The prepared Cu/SiC nanocomposites possessed good electrical conductivity,high thermal stability,and excellent mechanical properties. 展开更多
关键词 copper matrix nanocomposites silicon carbide coefficient of thermal expansion elastic moduli electrical conductivity mechanical alloying
下载PDF
Microstructure and Mechanical Properties of Alumina-Glass Composites Prepared by Melt Infiltration
6
作者 Claudia Garcia Maria Perez +3 位作者 Maria Clsneros Hugo Lopez Eduardo Valdes Federico Zertuche 《材料科学与工程(中英文版)》 2010年第7期7-11,共5页
关键词 微观结构特征 玻璃基体 力学性能 二氧化铝 复合材料 熔体 浸渗法 热膨胀系数
下载PDF
Mechanical Properties of a Low-thermal-expansion Aluminum/Silicon Composite Produced by Powder Metallurgy 被引量:8
7
作者 Y.Q.Liu S.H.Wei +2 位作者 J.Z.Fan Z.L.Ma T.Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期417-422,共6页
AI matrix composite containing high volume fraction silicon has been promising candidate for lightweight and low-thermal-expansion components. Whereas, optimization of its mechanical properties still is an open challe... AI matrix composite containing high volume fraction silicon has been promising candidate for lightweight and low-thermal-expansion components. Whereas, optimization of its mechanical properties still is an open challenge. In this article, a flexile powder metallurgy processing was used to produce a fully dense AI-4.0Cu (wt%) alloy composite reinforced with 65 vol.% Si particles. In this composite, Si particles were homogenously distributed, and the particle size was refined to the range of 3-15 μm. Tensile and flexural strength of the composite were 282 and 455 MPa, respectively, about 100% and 50% higher than the best properties reported in literature. The measured fracture toughness of the composite was 4.90 MPa m1/2. The improved strength of 65%Si/AI was attributed to the optimized particle characteristics and matrix properties. This investigation is expected to provide a primary understanding of the mechanical behaviors of Si/AI composites, and also promote the structural applications of this low-thermal-expansion material. 展开更多
关键词 Aluminum matrix composite Powder metallurgy mechanical properties coefficient of thermal expansion FRACTURE
原文传递
Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites 被引量:3
8
作者 Hemant Pal Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1132-1140,共9页
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ... The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element. 展开更多
关键词 metal matrix composites carbon nanotubes mechanical properties coefficient of thermal expansion electrical conductivity
下载PDF
Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite 被引量:2
9
作者 Manjula Sharma Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期222-233,共12页
In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites wer... In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method.The elastic moduli and the coefficient of thermal expansion(CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix.Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix.The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion The hardness and elastic modulus of the nanocomposite increase by 21%and 20%,respectively,upon CNT addition.The CTE of CNT/A1 nanocomposite decreases to 70%compared with that of nano Al. 展开更多
关键词 metal matrix composites carbon nanotubes nanocomposites chemical properties thermal expansion mechanical properties
下载PDF
Mechanical and Thermal Expansion Properties of SiCp/ZAlSi9Mg Composites Produced by Centrifugal Casting 被引量:2
10
作者 王开 jiang tao +3 位作者 huang zhili xue hansong yang dazhuang zhu zizong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期197-203,共7页
Centrifugal casting was applied to produce cylindrical castings using SiCp/Al composite slurry,which contained 20%SiC particles.The castings comprised a particle free zone and a particle rich zone.The amount of SiC pa... Centrifugal casting was applied to produce cylindrical castings using SiCp/Al composite slurry,which contained 20%SiC particles.The castings comprised a particle free zone and a particle rich zone.The amount of SiC particles had a dramatic transformation from the particle rich zone to the particle free zone,and the maximum content of SiC particles in the particle rich zone reached up to 40 vol%.The ultimate tensile strength(UTS) of the as-cast SiCp / Al composites in the particle rich zone was 143 MPa,and the fracture was caused by the desorption of SiC particles from matrix alloy.The coefficient of thermal expansion(CTE) of the SiC_p / Al composites in the range of 20 and 100 ℃ was determined as 16.67×10^(-6) s^(-1),and the experimental CTE was lower than the predicted data based on the Kerner's model.The results show that the decrease in CTE in the case of the composites at high temperature stage can be attributed to the solute concentration of Si in Al and the plastic deformation of the matrix alloy in the composites with void architecture. 展开更多
关键词 metal-matrix composites aluminum thermal expansion property mechanical property casting
下载PDF
Ti_(3)AlC_(2−y)N_(y) carbonitride MAX phase solid solutions with tunable mechanical,thermal,and electrical properties
11
作者 Weiwei Zhang Shibo Li +3 位作者 Shukai Fan Xuejin Zhang Xiachen Fan Guoping Bei 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1473-1481,共9页
Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solu... Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solution bulks have not been reported thus far.Here,previously reported Ti_(3)AlC_(2−y)N_(y) solid solution bulks(y=0.3,0.5,0.8,and 1.0)were synthesized via hot pressing of their powder counterparts under optimized conditions.The prepared Ti_(3)AlC_(2−y)N_(y) bulks are dense and have a fine microstructure with grain sizes of 6–8μm.The influence of the N content on the mechanical properties,electrical conductivities,and coefficients of thermal expansion(CTEs)of the prepared Ti_(3)AlC_(2−y)N_(y) bulk materials was clarified.The flexural strength and Vickers hardness values increased with increasing N content,suggesting that solid solution strengthening effectively improved the mechanical properties of Ti_(3)AlC_(2−y)N_(y).Ti_(3)AlCN(y=1)had the highest Vickers hardness and flexural strength among the studied samples,reaching 5.54 GPa and 550 MPa,respectively.However,the electrical conductivity and CTEs of the Ti_(3)AlC_(2−y)N_(y) solid solutions decreased with increasing N content,from 8.93×10^(−6) to 7.69×10^(−6) K^(−1) and from 1.33×10^(6) to 0.95×10^(6) S/m,respectively.This work demonstrated the tunable properties of Ti_(3)AlC_(2−y)N_(y) solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications. 展开更多
关键词 MAX solid solutions Ti_(3)AlC_(2−y)N_(y) microstructure mechanical properties electrical conductivity thermal expansion
原文传递
Effect of freeze-thaw cycles on soil engineering properties of reservoir bank slopes at the northern foot of Tianshan Mountain 被引量:5
12
作者 QIN Zi-peng LAI Yuan-ming +1 位作者 TIAN Yan ZHANG Ming-yi 《Journal of Mountain Science》 SCIE CSCD 2021年第2期541-557,共17页
The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir s... The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there. 展开更多
关键词 mechanical properties Seepage coefficient thermal conductivity Micro structure Freeze-thaw cycles Reservoir bank slope
下载PDF
Microstructure,elastic/mechanical and thermal properties of CrTaO_(4):A new thermal barrier material?
13
作者 Shuang Zhang Xiaohui Wang +6 位作者 Chao Zhang Huimin Xiang Yingwei Li Cheng Fang Mingliang Li Hailong Wang Yanchun Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第3期373-387,共15页
CrTaO_(4)(or Cr_(0.5)Ta_(0.5)O_(2))has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys(RHEAs).This rarely encountered comple... CrTaO_(4)(or Cr_(0.5)Ta_(0.5)O_(2))has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys(RHEAs).This rarely encountered complex oxide can effectively prevent the outward diffusion of metal cations from the RHEAs.Moreover,the oxidation kinetics of CrTaO_(4)-forming RHEAs is comparable to that of the well-known oxidation resistant Cr_(2)O_(3)-and Al_(2)O_(3)-forming Ni-based superalloys.However,CrTaO_(4)has been ignored and its mechanical and thermal properties have yet to be studied.To fill this research gap and explore the untapped potential for its applications,here we report for the first time the microstructure,mechanical and thermal properties of CrTaO_(4)prepared by hot-press sintering of solid-state reaction synthesized powders.Using the HAADF and ABF-STEM techniques,rutile crystal structure was confirmed and short range ordering was directly observed.In addition,segregation of Ta and Cr was identified.Intriguingly,CrTaO_(4)exhibits elastic/mechanical properties similar to those of yttria stabilized zirconia(YSZ)with Young’s modulus,shear modulus,and bulk modulus of 268,107,and 181 GPa,respectively,and Vickers hardness,flexural strength,and fracture toughness of 12.2±0.44 GPa,142±14 MPa,and 1.87±0.074 MPa·m^(1/2).The analogous elastic/mechanical properties of CrTaO_(4)to those of YSZ has spurred inquiries to lucrative leverage it as a new thermal barrier material.The measured melting point of CrTaO_(4)is 2103±20 K.The anisotropic thermal expansion coefficients areα_(a)=(5.68±0.10)×10^(-6)K^(-1),α_(c)=(7.81±0.11)×10^(-6)K^(-1),with an average thermal expansion coefficient of(6.39±0.11)×10^(-6)K^(-1).The room temperature thermal conductivity of CrTaO_(4)is 1.31 W·m^(-1)·K^(-1)and declines to 0.66 W·m^(-1)·K^(-1)at 1473 K,which are lower than most of the currently well-known thermal barrier materials.From the perspective of matched thermal expansion coefficient,CrTaO_(4)pertains to an eligible thermal barrier material for refractory metals such as Ta,Nb,and RHEAs,and ultrahigh temperature ceramics.As such,this work not only provides fundamental microstructure,elastic/mechanical and thermal properties that are instructive for understanding the protectiveness displayed by CrTaO_(4)on top of RHEAs but also outreaches its untapped potential as a new thermal barrier material. 展开更多
关键词 MICROSTRUCTURE SYNTHESIS thermal conductivity thermal expansion coefficient melting point CrTaO_(4) mechanical and thermal properties
原文传递
Studies on the Structure and Properties of Cordierite Synthesized by Talc-Magnesite 被引量:4
14
作者 武秀兰 王芬 任强 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第6期732-736,共5页
Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a composing system of raw materials, and the eff... Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a composing system of raw materials, and the effect of temperature on the crystal cell parameters and microstructure and thermal expansion coefficient of cordierite crystal have been studied via testing methods of XRD, SEM, etc. The result shows that the homogeneous cordierite can be synthesized by the systematic composing materials of "talc-magnesite-coal gangue-talc" with heat pre-servation at 1350 ℃ for 1 h; as the keeping time is prolonged, Al^3+ and Mg^2+ in cordierite crystal are replaced by a few impurity ions such as Fe^3+, Fe^2+, etc., and the crystal cell parameters of cordierite present an increase trend; as the high-temperature heat preservation is prolonged, the content of glassy phase in the sample is increased, its density is improved, and its thermal expansion coefficient presents an increase trend. 展开更多
关键词 talc-magnesite reaction mechanism CORDIERITE crystal cell parameters thermal expansion coefficient
下载PDF
Microstructure and properties of Si_p/4032Al composite
15
作者 修子扬 张强 +2 位作者 宋美慧 朱德志 武高辉 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期115-119,共5页
The environmental-friendly Si_p/4032Al composite with high content of silicon particles (65%, mass fraction) was fabricated by squeeze-casting method. The results show that the composite is dense and silicon particles... The environmental-friendly Si_p/4032Al composite with high content of silicon particles (65%, mass fraction) was fabricated by squeeze-casting method. The results show that the composite is dense and silicon particles are distributed uniformly. Transmission electron microscope observations show that a high density of stacking faults, twins and dislocations are found in silicon particles. The Si-Al interfaces are well-bonded and no interface reactants are found. The dislocations and eutectic silicon precipitates are observed in 4032Al matrix. The Si_p/4032Al composite has low density (2.4g/cm3), low coefficient of thermal expansion (8.1×10 -6/℃), high thermal conductivity (161.3W/(m·℃)), and the annealing treatment can reduce the coefficient of thermal expansion and improve the thermal conductivity. Moreover, the composite has excellent special strength(131.8MPa·cm3/g)and special modulus (49.7GPa·cm3/g). 展开更多
关键词 ALUMINUM matrix COMPOSITE microstructure thermal expansion thermal CONDUCTIVITY mechanical properties
下载PDF
偏组成堇青石陶瓷材料结构与性能
16
作者 吴建锋 魏鹏 +2 位作者 徐晓虹 谢国斌 陈智超 《陶瓷学报》 CAS 北大核心 2024年第1期156-165,共10页
堇青石陶瓷具有热膨胀系数低、抗热震性好、耐高温等特点,被广泛应用于高低温急剧变化的环境。如何进一步降低堇青石陶瓷的热膨胀系数,提升其使用性能,仍然是国内外研究的热点,以单层片状结构的苏州高岭土、滑石和γ-Al_(2)O_(3)为原料... 堇青石陶瓷具有热膨胀系数低、抗热震性好、耐高温等特点,被广泛应用于高低温急剧变化的环境。如何进一步降低堇青石陶瓷的热膨胀系数,提升其使用性能,仍然是国内外研究的热点,以单层片状结构的苏州高岭土、滑石和γ-Al_(2)O_(3)为原料,设计了不同的配比组成并制备了堇青石低膨胀陶瓷样品。采用XRD、SEM、CTE和EPMA等测试技术对样品的结构和性能进行了表征。探究了偏化学计量不同配比组成对合成堇青石陶瓷的结构与性能的影响。结果表明:偏镁样品(Si/Al为1.34时)合成的是单一的纯相堇青石;样品的热膨胀系数为1.91×10^(-6)℃^(-1) (25℃~800℃),抗折强度为50 MPa,气孔率为20%,体积密度为1.90 g·cm^(-3)。风冷热震循环试验(25℃~1000℃) 30次后抗折强度损失率仅为2.66%。偏镁组成中的MgO促进了高温液相的生成,液相传质推动高温化学反应充分进行,提高了样品中的堇青石含量(达到了99 wt.%),生成的堇青石晶粒定向排列,降低了样品的热膨胀系数,提高了样品的抗热震性。 展开更多
关键词 堇青石陶瓷 偏化学计量组成 热膨胀系数 抗热震性 结构与性能
下载PDF
Preparation,mechanical,and thermal properties of a promising thermal barrier material:Y_(4)Al_(2)O_(9) 被引量:4
17
作者 Yanchun ZHOU Xinpo LU +1 位作者 Huimin XIANG Zhihai FENG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2015年第2期94-102,共9页
In our previous work,anisotropic chemical bonding,low shear deformation resistance,damage tolerance ability,low thermal conductivity,and moderate thermal expansion coefficient of Y_(4)Al_(2)O_(9)(YAM)were predicted.In... In our previous work,anisotropic chemical bonding,low shear deformation resistance,damage tolerance ability,low thermal conductivity,and moderate thermal expansion coefficient of Y_(4)Al_(2)O_(9)(YAM)were predicted.In this work,phase-pure YAM powders were synthesized by solid-state reaction between Y2O3 and Al_(2)O_(3)and bulk YAM ceramics were prepared by hot-pressing method.Lattice parameters and a new set of X-ray powder diffraction data were obtained by Rietveld refinement.The mechanical and thermal properties of dense YAM ceramics were investigated.The measured elastic moduli are close to the theoretical predicted values and the stiffness can be maintained up to 1400℃.The flexural strength and fracture toughness are 252.1±7.3 MPa and 3.36±0.20 MPa·m^(1/2),respectively.Damage tolerance of YAM was also experimentally proved.The measured average linear thermal expansion coefficient(TEC)of YAM is 7.37×10^(-6)K^(-1),which is very close to the theoretical predicted value.Using high-temperature X-ray diffraction(XRD)analysis,volumetric TEC is determined(23.37±1.61)×10^(-6)K^(-1)and the anisotropic TEC areaa=7.34×10^(-6)K^(-1),ab=7.54×10^(-6)K^(-1),andac=7.61×10^(-6)K^(-1). 展开更多
关键词 Y4Al2O9 X-ray diffraction(XRD)pattern mechanical properties thermal expansion damage tolerance
原文传递
Ni-Ti-Mo钎料连接SiC陶瓷的微观组织与性能研究
18
作者 江柏均 吴江 +3 位作者 辛成来 颜家振 石浩江 李宁 《真空科学与技术学报》 CAS CSCD 北大核心 2024年第11期950-954,共5页
为了缓解SiC陶瓷钎焊接头中的残余应力,提高接头的室温力学性能,采用Ni-Ti-Mo钎料来连接SiC陶瓷。结果表明:SiC/Ni-Ti-Mo/SiC接头结合良好,焊缝致密无孔洞。接头由界面反应区和焊缝中心区两个区域组成,界面反应区的微观组织为(Ti,Mo)C相... 为了缓解SiC陶瓷钎焊接头中的残余应力,提高接头的室温力学性能,采用Ni-Ti-Mo钎料来连接SiC陶瓷。结果表明:SiC/Ni-Ti-Mo/SiC接头结合良好,焊缝致密无孔洞。接头由界面反应区和焊缝中心区两个区域组成,界面反应区的微观组织为(Ti,Mo)C相,焊缝中心区的微观组织为Ni2Si和Ni3Si2以及大量的(Ti,Mo)C颗粒。接头中大量生成的(Ti,Mo)C相与SiC陶瓷母材的热膨胀系数相近,能降低接头的残余应力,提高了接头的力学性能。接头的平均室温剪切强度达为176±17 MPa,且断裂方式为母材断裂。 展开更多
关键词 钎焊 Ni-Ti-Mo钎料 SIC陶瓷 力学性能 热膨胀系数
下载PDF
粉末冶金(SiCp+B_(4)C)/6061Al复合材料组织与性能研究
19
作者 付玉 王宇 +4 位作者 徐永东 施虹霞 王荫洋 朱秀荣 王军 《兵器材料科学与工程》 CAS CSCD 北大核心 2024年第5期78-83,共6页
采用热等静压工艺制备了体积分数为40%的(SiCp+B4C)/6061Al复合材料,研究固溶时效处理对40%(SiCp+B_(4)C)/6061Al复合材料显微组织、热导率、线膨胀系数、力学性能和微屈服强度的影响。结果表明:热等静压法制备的铝基复合材料组织致密;... 采用热等静压工艺制备了体积分数为40%的(SiCp+B4C)/6061Al复合材料,研究固溶时效处理对40%(SiCp+B_(4)C)/6061Al复合材料显微组织、热导率、线膨胀系数、力学性能和微屈服强度的影响。结果表明:热等静压法制备的铝基复合材料组织致密;热等静压态复合材料的平均线膨胀系数为13.1×10^(-6) K^(-1),热导率为165.3 W/(m·K);固溶时效态复合材料的平均线膨胀系数为13×10^(-6) K^(-1),热导率为146.4 W/(m·K);与热等静压态相比,固溶时效态复合材料的抗拉强度提高了88%,为477 MPa,抗弯强度为644 MPa,微屈服强度为236 MPa,具有较高的力学性能和尺寸稳定性。本文采用的材料设计方法与热等静压成形技术,为高品质高体积分数颗粒增强铝基复合材料低成本制造提供基础。 展开更多
关键词 铝基复合材料 粉末冶金 线膨胀系数 显微组织 力学性能
下载PDF
Elevating the comprehensive thermal properties of rare-earth cerates through high-entropy design 被引量:1
20
作者 Zhaoxuan Zhang Yiling Huang +4 位作者 Fan Peng Wei Zheng Caifen Jiang Xuemei Song Yi Zeng 《Journal of Materiomics》 SCIE CSCD 2024年第5期1126-1136,共11页
In the rapidly evolving aerospace sector,the quest for sophisticated thermal barrier coating(TBC)materials has intensified.These materials are primarily sought for their superior comprehensive thermal characteristics,... In the rapidly evolving aerospace sector,the quest for sophisticated thermal barrier coating(TBC)materials has intensified.These materials are primarily sought for their superior comprehensive thermal characteristics,which include a low thermal conductivity coupled with a high coefficient of thermal expansion(CTE)that synergizes with the substrate.In our study,we adopt a solid-state method to synthesize a series of high-entropy rare-earth cerates:La_(2)Ce_(2)O_(7)(1RC),(La_(1/2)Nd_(1/2))2Ce_(2)O_(7)(2RC),(La_(1/3)Nd_(1/3)Sm_(1/3))_(2)Ce_(2)O_(7)(3RC),(La_(1/4)Nd_(1/4)Sm_(1/4)Eu_(1/4))_(2)Ce_(2)O_(7)(4RC),and(La_(1/5)Nd_(1/5)Sm_(1/5)Eu_(1/5)Gd_(1/5))_(2)Ce_(2)O_(7)(5RC),all sintered at 1,600℃ for 10 h.We thoroughly examine their phase structure,morphology,elemental distribution,and thermal properties.Our in-depth analysis of the phonon scattering mechanisms reveals that 4RC and 5RC exhibit exceptional thermal properties:high CTEs of 13.00×10^(−6) K^(−1) and 12.77×10^(−6) K^(−1) at 1,400℃,and low thermal conductivities of 1.55 W/(m·K)and 1.68 W/(m·K)at 1,000℃,respectively.Compared to other TBC systems,4RC and 5RC stand out for their excellent thermal characteristics.This study significantly contributes to the development of high-entropy oxides for TBC applications. 展开更多
关键词 thermal barrier coatings(TBCs) Comprehensive thermal properties coefficient of thermal expansion thermal conductivity Phonon scattering mechanisms
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部