期刊文献+
共找到4,083篇文章
< 1 2 205 >
每页显示 20 50 100
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
1
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
Dynamic tensile strength and failure mechanisms of thermally treated sandstone under dry and water-saturated conditions 被引量:8
2
作者 Pin WANG Tu-bing YIN Bi-wei HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2217-2238,共22页
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston... To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed. 展开更多
关键词 SANDSTONE dynamic tensile strength hydro-thermal coupling damage loading rate dependence failure mechanism
下载PDF
Effect of kaolin on tensile strength and humidity resistance of a water-soluble potassium carbonate sand core 被引量:3
3
作者 Long Zhang Li-na Zhang Yuan-cai Li 《China Foundry》 SCIE 2016年第1期15-21,共7页
Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low h... Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low humidity resistance. The purpose of this study is to prepare a water-soluble potassium carbonate sand core with addition of kaolin by the hot-temping method. The effects of kaolin on tensile strength, humidity resistance, fracture mechanism, as well as the gas evolution and collapsibility of WSCs were investigated. Results show that both the crystal morphology and the fracture mechanism of the inorganic salt are changed under the participation of kaolin, contributing to the increase of the tensile strength and the humidity resistance of the core. With the addition of 3wt.% kaolin, the tensile strength could be increased by a factor of 2, reached 1.50 MPa and the hygroscopic rate could be decreased by 14%, achieved 0.559%(after stored for 8 h), respectively. As the addition amount of kaolin increases from 0wt.% to 3wt.%, the main fracture mechanism changes from a adhesive to a cohesive fracture mechanism. The water-soluble potassium carbonate core obtained has the low gas evolution and excellent collapsibility, which makes it suitable for casting low melting metal with complex cavities and crooked channels. 展开更多
关键词 water-soluble core KAOLIN tensile strength humidity resistance strengthening mechanism
下载PDF
Effect of the mineral spatial distribution heterogeneity on the tensile strength of granite:Insights from PFC3D-GBM numerical analysis 被引量:3
4
作者 Tao Zhang Liyuan Yu +3 位作者 Yuxuan Peng Hongwen Jing Haijian Su Jiangbo Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1144-1160,共17页
The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow cod... The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample. 展开更多
关键词 Rock mechanics tensile strength Spatial distribution of minerals Three-dimensional(3D)grain-based model (GBM) Transgranular contact
下载PDF
Size effects on the tensile strength and fracture toughness of granitic rock in different tests 被引量:1
5
作者 Ignacio Pérez-Rey Andrea Muñoz-Ibáñez +5 位作者 Manuel A.González-Fernández Mauro Muñiz-Menéndez Miguel Herbón Penabad Xian Estévez-Ventosa Jordi Delgado Leandro RAlejano 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2179-2192,共14页
This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of differe... This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of different sizes with the diameter ranging from 30 mm to 84 mm.The samples have been subjected to direct tensile strength(DTS)tests,indirect Brazilian tensile strength(BTS)tests and to two fracture toughness testing approaches.Whereas DTS and fracture toughness were found to consistently grow with sample size,this trend was not clearly identified for BTS,where after an initial grow,a plateau of results was observed.This is a rather complete database of tensile related properties of a single rock type.Even if similar databases are rare,the obtained trends are generally consistent with previous scatter and partial experimental programs.However,different observations apply to different types of rocks and experimental approaches.The differences in variability and mean values of the measured parameters at different scales are critically analysed based on the heterogeneity,granular structure and fracture mechanics approaches.Some potential relations between parameters are revised and an indication is given on potential sample sizes for obtaining reliable results.Extending this database with different types of rocks is thought to be convenient to advance towards a better understanding of the tensile strength of rock materials. 展开更多
关键词 Size effect tensile strength Fracture toughness GRANITE Finite fracture mechanics
下载PDF
An Average Failure Index Method for the Tensile Strength Prediction of Composite Adhesive-bonded π Joints
6
作者 张建宇 SHAN Meijuan +1 位作者 赵丽滨 FEI Binjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期292-301,共10页
An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure cr... An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering. 展开更多
关键词 joints mechanical properties finite element analysis strength
下载PDF
MICROSTRUCTURE AND MECHANICAL PROPERTY DEVELOPMENT IN THE SIMULATED HEAT AFFECTED ZONE OF V TREATED HSLA STEELS 被引量:4
7
作者 Y. T. Chen A.M. Guo L.X. Wu J. Zeng P.H. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第1期57-67,共11页
The simulated heat affected zone (HAZ) of the high strength low alloy (HSLA) steels containing 0%, 0.047%, 0.097% and 0.151% vanadium, respectively, were studied with Gleeble-2000 thermomechanical simulator to det... The simulated heat affected zone (HAZ) of the high strength low alloy (HSLA) steels containing 0%, 0.047%, 0.097% and 0.151% vanadium, respectively, were studied with Gleeble-2000 thermomechanical simulator to determine the influence of vanadium addition on the mechanical properties of the HAZ. The HAZ simulation involved reheating the samples to 1350℃, and then cooling to ambient temperature at a cooling rate of 5℃/s ranging from 800 to 500℃ (△8/5=60s). The mechanical properties including tensile strength and -20℃ impact toughness were conducted. The microstructures of the base steel and the simulated HAZs were investigated using optical microscope, scanning electron microscope ( SEM ) and transmission electron microscope (TEM). Based on the systemutic examination, the present work confirmed that about 0.05% vanadium addition to low carbon low alloy steels resulted in expected balance of strength and toughness of the HAZ. And more than 0.10% levels addition led to detrimental toughness of the HAZ SEM study showed that the simulated 0.097% and 0.151%V HAZs consisted of more coarse ferrite plates with greater and more M-A constituents along austenite grain and ferrite plate bound- aries. The impact fracture surfaces of the simulated 0.097% and 0.151%V HAZs showed typically brittle mode with predominant cleavages. The size of the facet in the fracture surface increased with increasing vanadium level from 0.097% to 0.151%.As a result, the simulated 0.151% V HAZ has the lowest impact toughness of the four specimens. 展开更多
关键词 VANADIUM high strength low alloy (HSLA) steel mechanical property heat affected zone (HAZ)
下载PDF
Study on Mechanical Property in Steel-Aluminum Solid to Liquid Bonding
8
作者 LizhongZHANC PengZHANG +3 位作者 YunhuiDU DabenZENG JianzhongCUI LiminBA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期149-151,共3页
The bonding of solid steel plate to liquid Al was conducted using rapid solidification. The influence of thickness of Fe-Al compound layer at the interface on interfacial shear strength of bonding plate was studied. T... The bonding of solid steel plate to liquid Al was conducted using rapid solidification. The influence of thickness of Fe-Al compound layer at the interface on interfacial shear strength of bonding plate was studied. The results show that the relationship between thickness of Fe-AI compound layer and interfacial shear strength is 5=30.4+8.51 h-0.51 h2 +0.007 h3 (where h is thickness of Fe-AI compound layer, S is interfacial shear strength). When thickness of Fe-AI compound layer is 10.7 um, the largest interfacial shear strength is 71.6 MPa. 展开更多
关键词 mechanical property Rapid solidification INTERFACE Interfacial shear strength
下载PDF
Analysis of mechanical strengths of extreme line casing joint considering geometric, material, and contact nonlinearities
9
作者 Ji-Yun Zhang Chi Peng +4 位作者 Jian-Hong Fu Quan Cao Yu Su Jian-Yun Pang Zi-Qiang Yu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1992-2004,共13页
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve... To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint. 展开更多
关键词 Extreme line casing Elastic-plastic mechanics Finite element analysis tensile strength Collapse strength
下载PDF
Microstructure and Mechanical Properties of Aer Met 100 Ultra-high Strength Steel Joints by Laser Welding 被引量:4
10
作者 刘奋成 YU Xiaobin +3 位作者 HUANG Chunping HE Lihua CHEN Yuhua BU Wende 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期827-830,共4页
AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding jo... AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding joints were investigated, and the mechanical property of the welding joints was analyzed. The experimental results showed that the fusion zone of welding joint mainly consisted of columnar grains and a fine dendrite substructure grew epitaxially from the matrix. With the other conditions remaining unchanged, a finer weld microstructure was along with the scanning speed increase. The solidification microstructure gradually transformed from cellular crystal into dendrite crystal and the spaces of dendrite secondary arms rose from the fusion line to the center of the fusion zone. In the fusion zone of the weld, the rapid cooling caused the formation of martensite, which led the microhardness of the fusion zone higher than that of the matrix and the heat affected zone. The tensile strength of the welding joints was tested as 1 700 MPa, which was about 87% of the matrix. However, the tensile strength of the welding joints without defects existed was tested as 1832 MPa, which was about 94% of the matrix. 展开更多
关键词 laser welding AerMet 100 ultra-high strength steel MICROSTRUCTURE mechanical property
下载PDF
Mechanical Properties and Flowability of High Strength Concrete Incorporating Ground Granulated Blast-furnace Slag 被引量:1
11
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第3期42-45,共4页
The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mec... The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mechanical properties of HSC were studied. Thehydration process and microstructure char- acteristics wereinvestigated by X-ray diffraction(XRD)and scanning microscopy(SEM),respectively. The test results indicate that the GGBS has especiallysupplementary effect on water reducing and excellent property Ofbetter control of lump loss. 展开更多
关键词 high strength concrete mechanical property FLOWABILITY
下载PDF
Process of friction-stir welding high-strength aluminum alloy and mechanical properties of joint 被引量:3
12
作者 王大勇 冯吉才 +3 位作者 郭德伦 孙成彬 栾国红 郭和平 《China Welding》 EI CAS 2004年第2期159-162,共4页
The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters... The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side. 展开更多
关键词 friction-stir welding high-strength aluminum alloy mechanical property
下载PDF
Mechanical properties and microstructure of an α+β titanium alloy with high strength and fracture toughness 被引量:9
13
作者 YU Yang HUI Songxiao YE Wenjun XIONG Baiqing 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期346-349,共4页
The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mech... The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mechanical processes can be used to optimize the relationship between its strength and fracture toughness. A Ti-62A alloy bar can be machined through a transus β-forged plus α+β solution treated and aged specimen with a lamellar alpha microstructure. The effects of heat treatment on the mechanical properties were discussed. Heat treatment provided a practical balance of strength, fracture toughness, and fatigue crack growth resistance. A comparison of the Ti-62A alloy with the Ti-62222S alloy under the same thermo-mechanical processing conditions showed that their properties are at the same level. 展开更多
关键词 titanium alloys mechanical properties strength TOUGHNESS fatigue crack growth rate
下载PDF
Experimental Study on Mechanical Properties of Q690 High-Strength Steel after High Cycle Fatigue Damage
14
作者 Ran Luo 《Open Journal of Applied Sciences》 2022年第2期243-255,共13页
Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load.... Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load. According to the fatigue cumulative damage method, the number of fatigue pre-damage vibration is designed in proportion. Then the fatigue pre-damage test is carried out on the high-strength steel, the stress-strain curve and the variation of residual mechanical property reduction coefficient with fatigue damage were drawn. The results show that: compared with the undamaged specimens, the yield strength and tensile strength of Q690 steel are less affected by fatigue damage, but the elongation changes more significantly, and the elastic modulus is not significantly affected. Finally, through the change of mechanical properties of Q690 high-strength steel with different fatigue damage, it provides a scientific basis for the performance evaluation of existing Q690 high-strength steel structure after fatigue damage. 展开更多
关键词 Q690 High-strength Steel Fatigue Damage mechanical property Stress-Strain Curve Reduction Factor
下载PDF
Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels 被引量:7
15
作者 Zhi-gang Wang A i-min Zhao +3 位作者 Zheng-zhi Zhao Jie-yun Ye Di Tang Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期915-922,共8页
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens... The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior. 展开更多
关键词 high strength steel dual-phase steel alloying elements microstructure mechanical properties sWain hardening
下载PDF
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:8
16
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUSIONS fine grain ferrite mechanical properties
下载PDF
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:3
17
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 DOUBLE NETWORK HYDROGEL WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
下载PDF
Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel 被引量:3
18
作者 Hong-xiang Yin Ai-min Zhao +4 位作者 Zheng-zhi Zhao Xiao Li Shuang-jiao Li Han-jiang Hu Wei-guang Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期262-271,共10页
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat... The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel. 展开更多
关键词 high strength steels transformation-induced plasticity phase transformations mechanical properties original microstructure work hardening
下载PDF
Effects of Mn and Cu on the Mechanical Properties of a High Strength Low Alloy NiCrMoV Steel 被引量:2
19
作者 A.Abdollah-zadeh M.Belbasy 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期470-474,共5页
The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23... The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23%-0.85%)and Cu (0.15%-0.45%) were cast and forged, and then austenitized at 870℃ for 1h, followed by oil quenching. All specimens were tempered at 650℃ for 1h. The results show that as the amounts of Mn and Cu increase respectively from 0.35% to 0.85% and from 0.15% to 0.45%, the yield and tensile strength increase. The highest impact energies were observed in the specimen with 0.35% Mn and in the specimen with 0.25% Cu. The impact energy decreases with increasing the Mn and Cu from 0.35% to 0.85% and from 0.25% to 0.45%, respectively. Furthermore, the variation of Mn and Cu does not cause a considerable change in the tempered martensite microstructure. The optimum strength and toughness is observed in 0.35% Mn containing steel and in the 0.25% Cu containing steel. 展开更多
关键词 NiCrMoV steel CU MN tensile strength impact energy
下载PDF
The effect of al particle size on thermal decomposition,mechanical strength and sensitivity of Al/ZrH_(2)/PTFE composite 被引量:4
20
作者 Jun Zhang Yu-chun Li +6 位作者 Jun-yi Huang Jia-xiang Wu Qiang Liu Shuang-zhang Wu Zhen-ru Gao Sheng Zhang Li Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期829-835,共7页
To study the thermal decomposition of Al/Zr H_(2)/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates,molding-vacuum sintering was adopted to pr... To study the thermal decomposition of Al/Zr H_(2)/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates,molding-vacuum sintering was adopted to prepare four groups of power materials and cylindrical specimens with different Al particle size.The active decomposition temperature of Zr H_(2) was obtained by TG-DSC,and the quasi-static mechanics/reaction characteristics as well as the impact sensitivity of the specimen were studied respectively by quasi-static compression and drop-hammer test.The results show that the yield strength of the material decreased with the increase of the Al particle size,while the compressive strength,failure strain and toughness increased first and then decreased,which reached the maximum values of 116.61 MPa,191%,and 119.9 MJ/m respectively when the Al particle size is 12-14 mm because of particle size grading.The specimens with the highest strength and toughness formed circumferential open cracks and reacted partly when pressed.Those with developmental cracks formed inside did not react.It is considered that fracture of specimens first triggered initial reaction between Al and PTFE to release an amount of heat.Then ZrH_(2) was activated and decomposed,and participated in subsequent reaction to generate Zr C.The impact sensitivity of the specimens decreased with the increase of Al particle size. 展开更多
关键词 Al/ZrH_(2)/PTFE Thermal decomposition mechanical strength Reaction characteristics impact sensitivity
下载PDF
上一页 1 2 205 下一页 到第
使用帮助 返回顶部