This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mec...This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.展开更多
Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first...Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.展开更多
From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are...From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.展开更多
基金supported by the National Natural Science Foundation of China(No.10871034)the Natural Science Foundation Project of Chongqing(No.CSTC20-10BB8270)+1 种基金the Air Force Office of Scientific Research(No.FA9550-08-1-0136)the National Science Foundation(No.OCE-0620464)
文摘This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.
基金Supported by Natioal Science Foundation of China (10171073).
文摘Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.
基金Project supported by the National Natural Science Foundation of China (No. 10871034)
文摘From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.