In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena ...In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena and, hence, their impact on human mesenchymal stem cell(hM SC) expansion. The geometric characteristics of the TissueFlex174;(Zyoxel Limited, Oxford, UK) microbioreactor were considered to set up a virtual bioreactor containing alginate(in both slab and bead configuration) scaffolds. The bioreactor and scaffolds were seeded with cells that were modelled as glucose consuming entities. The widely used glucose medium, Dulbecco's Modified Eagle Medium(DMEM), supplied at two inlet flow rates of 25 and 100 μl·h^(-1), was modelled as the fluid phase inside the bioreactors. The investigation, based on applying dimensional analysis to this problem, as well as on detailed three-dimensional transient CFD results, revealed that the default bioreactor design and boundary conditions led to internal and external glucose transport, as well as shear stresses, that are conducive to h MSC growth and expansion. Furthermore, results indicated that the ‘top-inout' design(as opposed to its symmetric counterpart) led to higher shear stress for the same media inlet rate(25 μl·h^(-1)), a feature that can be easily exploited to induce shear-dependent differentiation. These findings further confirm the suitability of CFD as a robust design tool.展开更多
Some falsehoods of the so-called double-wave theory (DWT) are pointed out. The logic and the origin of the DWT, and three of the four fundamental hypotheses of DWT are criticized. It is expounded that the hypothesis o...Some falsehoods of the so-called double-wave theory (DWT) are pointed out. The logic and the origin of the DWT, and three of the four fundamental hypotheses of DWT are criticized. It is expounded that the hypothesis of two wave functions is unreasonable, the hypothesized Hamiltonian differs from the actually used Hamiltonian, and the hypothesized expression of measured values or mean values of mechanical quantities is wrong and does not express the measured values or mean values at all.展开更多
基金Department of Engineering Science, University of Oxford, Scholarship
文摘In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena and, hence, their impact on human mesenchymal stem cell(hM SC) expansion. The geometric characteristics of the TissueFlex174;(Zyoxel Limited, Oxford, UK) microbioreactor were considered to set up a virtual bioreactor containing alginate(in both slab and bead configuration) scaffolds. The bioreactor and scaffolds were seeded with cells that were modelled as glucose consuming entities. The widely used glucose medium, Dulbecco's Modified Eagle Medium(DMEM), supplied at two inlet flow rates of 25 and 100 μl·h^(-1), was modelled as the fluid phase inside the bioreactors. The investigation, based on applying dimensional analysis to this problem, as well as on detailed three-dimensional transient CFD results, revealed that the default bioreactor design and boundary conditions led to internal and external glucose transport, as well as shear stresses, that are conducive to h MSC growth and expansion. Furthermore, results indicated that the ‘top-inout' design(as opposed to its symmetric counterpart) led to higher shear stress for the same media inlet rate(25 μl·h^(-1)), a feature that can be easily exploited to induce shear-dependent differentiation. These findings further confirm the suitability of CFD as a robust design tool.
文摘Some falsehoods of the so-called double-wave theory (DWT) are pointed out. The logic and the origin of the DWT, and three of the four fundamental hypotheses of DWT are criticized. It is expounded that the hypothesis of two wave functions is unreasonable, the hypothesized Hamiltonian differs from the actually used Hamiltonian, and the hypothesized expression of measured values or mean values of mechanical quantities is wrong and does not express the measured values or mean values at all.