期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of contact angle and helix angle on slide-roll ratio under the accelerated motion state of ball screw mechanism 被引量:3
1
作者 Kong Deshun Wang Min Gao Xiangsheng 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期398-408,共11页
To study the effect of the contact angle and helix angle on slide-roll ratio at the ball contact points under the accelerated motion state of ball screw mechanisrm(B S M),the curve theory in differential geometry a d ... To study the effect of the contact angle and helix angle on slide-roll ratio at the ball contact points under the accelerated motion state of ball screw mechanisrm(B S M),the curve theory in differential geometry a d the homogeneous transformation matrix ae used to establish the acceleration kinematics model of BSM.The model can be used to describe the accelerated motion relationships among the screw,balls and nut,calculate the acceleration of relative motion at the contact points between the balls and raceways,and analyze five accelerated motion rules between the balls and raceways.It also conducts a simulation analysis of the slide-roll ratio relationship between the accelerations at the ball center and the contact point of ball under different contact angles and helix angles.As shownby the analysis,with the increase in the BSM’s contact angle,the slide-roll ratio at the contact points decreases,and the contact angle has a relatively significant effect on the slide-roll ratio.However,with the decrease in the BSM’helix angle,the slide-roll ratio at the contact points decreases,and the helix angle has a relatively insignificant effect on the slide-roll ratio.By measuring the accelerations of both the screw and nut under the accelerated motion state,it also verifies the existence of the slide-roll mixed motion at the ball contact point A between the ball and the screw racewayand pure rolling at the ball contact point B between the ball and the nut raceway during the accelerated motion. 展开更多
关键词 ball screw mechanism contact angle helix angle slide-roll ratio
下载PDF
Design and Dynamic Analysis of the Recirculating Planetary Roller Screw Mechanism 被引量:1
2
作者 Guan Qiao Rong Liao +2 位作者 Shijie Guo Zhenghong Shi Shangjun Ma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期240-255,共16页
The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless a... The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization. 展开更多
关键词 Recirculating planetary roller screw mechanism Nut threadless area Virtual assembly method Motion relationship Dynamic analysis
下载PDF
Precision loss of ball screw mechanism under sliding-rolling mixed motion behavior
3
作者 QI Bao-bao CHENG Qiang +2 位作者 LI Shun-lei LIU Zhi-feng YANG Cong-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1357-1376,共20页
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider... The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period. 展开更多
关键词 ball screw mechanism precision loss sliding-rolling mixed motion creep lubrication
下载PDF
Research and experimental analysis of precision degradation method based on the ball screw mechanism
4
作者 孔德顺 GAO Xiangsheng JIANG Huizeng 《High Technology Letters》 EI CAS 2023年第3期247-256,共10页
As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long... As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long,which is not conducive to the design and development of new products. In this paper,the normal wear depth of the BSM nut raceway is calculated under the variable speed operation condition using the fractal wear analysis method and the BSM’s accelerated degradation proportional wear model. Parameters of the acceleration degradation model of the double-nut preloaded ball screw pair are calculated based on the physical simulation results. The accelerated degradation test platform of the BSM is designed and manufactured to calculate the raceway wear model when the lubrication condition is broken under the variable-speed inertial load and the boundary lubrication condition under the uniform speed state. Three load forces and two samples are selected for the accelerated degradation test of the BSM. The measured friction torque of the BSM is employed as the evaluation index of the accuracy degradation test. In addition,the life cycle of the accuracy retention is accurately calculated by employing the parameters of the physical simulation model of the BSM. The calculations mentioned above can be used to estimate BSM’s accuracy performance degradation law under normal operating conditions. The application of the proposed model provides a new research method for researching the precision retention of the BSM. 展开更多
关键词 ball screw mechanism(BSM) fractal theory wear model accelerated degradation method friction torque precision retention
下载PDF
Structural Synthesis of a Class of 2R2T Hybrid Mechanisms 被引量:5
5
作者 TIAN Chunxu FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期703-709,共7页
Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially ... Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms. 展开更多
关键词 parallel mechanisms structural synthesis hybrid mechanisms screw theory
下载PDF
Synthesis of Branched Chains with Actuation Redundancy for Eliminating Interior Singularities of 3T1R Parallel Mechanisms 被引量:12
6
作者 LI Shihua LIU Yanmin +2 位作者 CUI Hongliu NIU Yunzhan ZHAO Yanzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期250-259,共10页
Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with... Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with actuation redundancy in parallel mechanism. Branched chains with actuation redundancy are synthesized for eliminating interior singularity of 3-translational and 1-rotational(3T1R) parallel mechanisms. Guided by the discriminance method of hybrid screw group according to Grassmann line geometry, all the possibilities are listed for the occurrence of interior singularities in 3T1R parallel mechanism. Based on the linear relevance of screw system and the principles of eliminating parallel mechanism singularity with actuation redundancy, different types of branched chains with actuation redundancy are synthesized systematically to indicate the layout and the number of the branched chainsinterior with actuation redundancy. A general method is proposed for the configuration synthesis of the branched chains with actuation redundancy of the redundant parallel mechanism, and it builds a solid foundation for the subsequent performance optimization of the redundant actuation parallel mechanism. 展开更多
关键词 parallel mechanism interior singularity hybrid screw group branched chain with actuation redundancy
下载PDF
A linear rotary magnetorheological damper for vehicles
7
作者 JIANGJiandong LIANGXichang ZHANGBo XIAOJunli 《Journal of Chongqing University》 CAS 2004年第1期11-15,共5页
A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure p... A new type of linear rotary magnetorheological damper (MRD) is proposed, which consists of a cylinder-type MRD and a screw mechanism to transform a linear motion into revolving motion. It is found that the structure parameters of MRD have complex relationship with the force of the damper, especially the lead angle, width and radius of the inner rotor. The analyses and simulation calculation of the static magnetic field give some usable data, and experiments of the damping component indicate that the proposed methods is feasible for developing linear rotary MRD. 展开更多
关键词 MR damper (MRD) screw mechanism automotive suspension
下载PDF
Three-dimensional parametric contact analysis of planetary roller screw mechanism and its application in grouping for selective assembly
8
作者 Huilin HE Peitang WEI +4 位作者 Huaiju LIU Xuesong DU Rui HU Genshen LIU Yajun WU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第1期53-72,共20页
The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine P... The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems. 展开更多
关键词 planetary roller screw mechanism(PRSM) contact position axial clearance machining error grouping for selective assembly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部