The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treat...The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3 h + 165°C×6 h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg_5Si_6) precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.展开更多
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ...By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.展开更多
With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is t...With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues.It is also important to the study of vacuum arc in vacuum switch.But for the limitations of available method used in analyzing the breakdown mechanism of vacuum,the main research on vacuum breakdown is macroscopic experiment.The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured.So the data from the experiments are dispersive and the complex physical change in vacuum breakdown can not be revealed.The purpose of this work is to analyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation.The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas.Based on the field emission theory in vacuum,electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study.The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions.Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules.The cross sections of the collision which is related with the energy are all from the experiments.The secondary electron emission,exciting,elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper.By the simulation,the number densities of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calculated. The effect of vacuum degree on discharge voltage is also discussed here.According to the simulation data,we draw the conclusion that the main reason for vacuum arc formation is metal vapor ionization and large amount of metal gas is from high energy electrons' collision with the anode.展开更多
基金financially supported by the Jiangsu province transformation of scientific and technological achievements program(BA2015041)the Jiangsu key laboratory for advanced metallic materials(BM2007204)
文摘The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3 h + 165°C×6 h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg_5Si_6) precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.
基金Financial support from the SINOPEC Research Program(No.ST13164-19]) is gratefully acknowledged
文摘By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.
基金Supported by National Natural Science Foundation of China(50877048)Program for New Century Excellent Talents in University of China(NECT-08-0863)Key Scientific and Technological project of Liaoning Science and Technology Department (2010219016)
文摘With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues.It is also important to the study of vacuum arc in vacuum switch.But for the limitations of available method used in analyzing the breakdown mechanism of vacuum,the main research on vacuum breakdown is macroscopic experiment.The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured.So the data from the experiments are dispersive and the complex physical change in vacuum breakdown can not be revealed.The purpose of this work is to analyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation.The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas.Based on the field emission theory in vacuum,electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study.The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions.Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules.The cross sections of the collision which is related with the energy are all from the experiments.The secondary electron emission,exciting,elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper.By the simulation,the number densities of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calculated. The effect of vacuum degree on discharge voltage is also discussed here.According to the simulation data,we draw the conclusion that the main reason for vacuum arc formation is metal vapor ionization and large amount of metal gas is from high energy electrons' collision with the anode.