Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. ...A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. Effects of vibration acceleration and mass ratio on the microstructure of Al-5% Cu alloy were investigated. Results show that the present mechanical vibration could provide localized cooling by extracting heat from the interior of molten alloy, and the cooling rate is strongly dependent on vibration acceleration. It is difficult to refine the solidified microstructure when the treated alloy keeps full liquid state within the entire vibrating duration. Significantly refined microstructure was obtained by applying mechanical vibration during the initial stage of solidification. Moreover, mechanisms of grain refinement were discussed.展开更多
The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repea...The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.展开更多
Mechanical vibration was applied to the solidification of a lost foam cast(LFC) 356 aluminum alloy.Effects of mechanical vibration,with different peak acceleration,on the size and morphology of α-Al phase,and also on...Mechanical vibration was applied to the solidification of a lost foam cast(LFC) 356 aluminum alloy.Effects of mechanical vibration,with different peak acceleration,on the size and morphology of α-Al phase,and also on the mechanical properties of the castings were studied.Results indicated that α-Al dendrites gradually grow into equiaxed grains as the peak acceleration of vibration is increased.When the peak acceleration is between about 1 to 4 g,α-Al phase distribution is uniform and is refined obviously.α-Al dendrites are reduced and the mechanical properties of the castings are improved significantly when compared to those of the castings that are produced without vibration.However,when the peak acceleration is higher than 4 g,strong vibration will lead to defects formation,such as sand adhesion,while the amount and size of pores will be increased.And due to the turbulent flow that caused by strong vibration,the chance of forming large pores in the matrix has been increased significantly.The increase in defects will result in the deterioration of mechanical properties.展开更多
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic c...As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage.展开更多
This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant ampli...This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant amplitude(31μm)were employed using a power amplifier as the power input device.X-ray diffraction,optical microscopy,and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions.Metallurgical features of the castings were evaluated using Image J software.The average values of metallurgical features,including primaryα-Al grain size,dendrite arm spacing,average area of eutectic silicon,aspect ratio,and percentage porosity,reduced by 34%,59%,56%,22%,and 62%,respectively,at 30 Hz frequency compared with stationary casting.Mechanical tests of the cast samples showed that the yield strength(YS),ultimate tensile strength(UTS),percentage elongation(%EL),and microhardness(HV)increased by 8%,13%,17%,and 16%,respectively,at 30 Hz frequency compared with stationary casting.The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets,cleavage facets,ductile tearing,and dimple morphologies.The presence of small dimples showed that plastic deformation occurred before fracture.展开更多
Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated....Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.展开更多
Energy preservation is one of the key components in developing eco-friendly machines.In industry,the majority of machines lose a considerable amount of energy through mechanical vibrations.However,the wasted energy th...Energy preservation is one of the key components in developing eco-friendly machines.In industry,the majority of machines lose a considerable amount of energy through mechanical vibrations.However,the wasted energy through vibration can be utilized as a renewable energy source to compensate for the overall energy loss.The research work presented in this paper discusses the ability to design a linear power generator utilizing Nd Fe-B magnets,which can generate energy through mechanical vibrations.A pilot model was developed and simulated to understand the efficiency and limitation.The results showed that the model could reduce 14% rotor bulk with a marginal impact on the current generation.展开更多
Al2O3/YSZ composite ceramics was fabricated with combustion synthesis technology, and the influences of mechanical vibration on its microstructures and properties were investigated. It is found that under the mechanic...Al2O3/YSZ composite ceramics was fabricated with combustion synthesis technology, and the influences of mechanical vibration on its microstructures and properties were investigated. It is found that under the mechanical vibration of ever-increasing frequency, increasing combustion temperature, accelerating ceramics/metal liquid-liquid separation and quickening ceramic solidification could not only reduce the average diameter and the size distribution of aligned ZrO2 nano-micron fibers in rod-shaped Al2O3 matrix grains, but also make the randomly-oriented rod-shaped grains finer and increase their aspect ratios. As a result, a remarkable increase in flexural strength and fracture toughness of the ceramics can be observed.展开更多
To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The e...To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively.展开更多
This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data a...This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data acquisition (DAQ) system. Four optimal sparse representation methods for compression have been considered including the method of frames ( MOF), best orthogonal basis ( BOB), matching pursuit (MP) and basis pursuit (BP). Furthermore, several indicators including compression ratio (CR), mean square error (MSE), energy retained (ER) and Kurtosis are taken to evaluate the performance of the above methods. Experimental results show that MP outperforms other three methods.展开更多
The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli ...The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli at all those frequencies have a larger total number and a larger total length of roots and a smaller permeability of root plasma-membrane, compared with those cultivated in an environment without vibration stress. Vibration at respectively 1 Hz, 2 Hz, 3 Hz and 4 Hz enhances root activity and the 3 Hz vibration is the most favorable. There is an obvious negative correlation between root activity and permeability of root plasma-membrane. The effects may be explained by the likelihood that mechanical Vibration at an appropriate frequency facilitates roots' absorbing water and minerals which are indispensable to inducing and synthesizing in roots some active substances favorable to growth. Nevertheless, overstress damages the integrity of root plasm-membrane, increases the permeability, and results in the disability of protecting root cells.展开更多
Basic equations of energy-to-cth-power difference criterion were derived for multi-degree-of-freedom (MDOF) systems subjected to stationary Gaussian excitations with non-zero mean. Modal transform technique was used i...Basic equations of energy-to-cth-power difference criterion were derived for multi-degree-of-freedom (MDOF) systems subjected to stationary Gaussian excitations with non-zero mean. Modal transform technique was used in order to reduce the unknowns. Main computational formulae were presented and suggested values of c were given. Numerical results show that the method of this paper prevails over equation difference criterion both in accuracy and in simplicity.展开更多
CNC machine have a fast development and is widely used in China. Generally, CNC machine tool, includs CNC lathes and CNC milling machine. CNC machine tool is a necessary tool for machining. It plays an important role ...CNC machine have a fast development and is widely used in China. Generally, CNC machine tool, includs CNC lathes and CNC milling machine. CNC machine tool is a necessary tool for machining. It plays an important role in the mechanical design and machining fields. CNC machine tool is mainly composed of two parts of the machine body and the computer control system. Mechanical equipment failures usually related information such as vibration, sound, pressure, temperature performance. CNC machine tool vibration monitoring system with piezoelectric accelerometer, the eddy current displacement sensor, signal amplifier, signal conditioning modules. We can take an advantage of the CNC machine tool vibration monitoring system for vibration monitoring and fault diagnosis of CNC machine tools.展开更多
When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the comput...When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Nickel-based alloys exhibit excellent high-temperature stxengtfi and oxidation resistance; however, because of coarse grains and severe segregation in daeir welding joints, these alloys exhibit increased susceptibilit...Nickel-based alloys exhibit excellent high-temperature stxengtfi and oxidation resistance; however, because of coarse grains and severe segregation in daeir welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechaxtical properties ofinckel-based alloy welded joints, sodium daiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechaxtical vibration to be investigated. On the basis of the results, the grain refinement mechan- ism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under wxious vibration modes and parameters was investigated. Compared witfi the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher haxdness distxibution was also achieved under the vibration conditions. In addition, the 7' phase exhibited a dispersed distribution and segregation was improved in the welded joints witfi vibration assistance. The results demonstxated that the generation of free crystals caused by vibration in the nucleation stage was the main mechaxtism of grain refinement. Also, free equiaxed grains and a dispersed 7' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys.展开更多
An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential o...An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics tr...The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics trajectory contained in the NCTF controller acts as movement/motion reference and a compensator is utilized to force the object to detect and follow the reference/desired trajectory. The object must follow and track closely and should be as fast as possible. The NCTF controller is designed with two different intelligent based compensator approaches which are fuzzy logic and extended minimal resource allocation network. The proposed controller which is NCTF are compared with the conventional proportional integral compensator. Then the results of simulation are discussed for the positioning performances. The inertia variations due to the effect of the design parameters are also assessed to see the robustness of controllers. The results show that the NCTF control method designed from an intelligent based compensator has a better positioning performance in terms of percentage of overshoot, settling time, and steady state error than the classical based compensator.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金Project(50804023)supported by the National Natural Science Foundation of ChinaProject(GJJ12032)supported by the Education Department of Jiangxi Province,China+1 种基金Project(20122BAB206021)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(20122BCB23001)supported by the Jiangxi Province Young Scientists Cultivating Programs,China
文摘A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. Effects of vibration acceleration and mass ratio on the microstructure of Al-5% Cu alloy were investigated. Results show that the present mechanical vibration could provide localized cooling by extracting heat from the interior of molten alloy, and the cooling rate is strongly dependent on vibration acceleration. It is difficult to refine the solidified microstructure when the treated alloy keeps full liquid state within the entire vibrating duration. Significantly refined microstructure was obtained by applying mechanical vibration during the initial stage of solidification. Moreover, mechanisms of grain refinement were discussed.
基金Projects(51475120,U1537201) supported by the National Natural Science Foundation of China
文摘The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.
基金supported by the National High Technology Research and Development Program of China (Grant No.2007AA03Z113)The National Natural Science Foundation of China (Grant No.50775085)
文摘Mechanical vibration was applied to the solidification of a lost foam cast(LFC) 356 aluminum alloy.Effects of mechanical vibration,with different peak acceleration,on the size and morphology of α-Al phase,and also on the mechanical properties of the castings were studied.Results indicated that α-Al dendrites gradually grow into equiaxed grains as the peak acceleration of vibration is increased.When the peak acceleration is between about 1 to 4 g,α-Al phase distribution is uniform and is refined obviously.α-Al dendrites are reduced and the mechanical properties of the castings are improved significantly when compared to those of the castings that are produced without vibration.However,when the peak acceleration is higher than 4 g,strong vibration will lead to defects formation,such as sand adhesion,while the amount and size of pores will be increased.And due to the turbulent flow that caused by strong vibration,the chance of forming large pores in the matrix has been increased significantly.The increase in defects will result in the deterioration of mechanical properties.
基金Project supported by the National Natural Science Foundation of China(Grant No.10476019)the Fundamental Research Funds for the Central Universities(Grant No.K5051304011)
文摘As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage.
文摘This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant amplitude(31μm)were employed using a power amplifier as the power input device.X-ray diffraction,optical microscopy,and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions.Metallurgical features of the castings were evaluated using Image J software.The average values of metallurgical features,including primaryα-Al grain size,dendrite arm spacing,average area of eutectic silicon,aspect ratio,and percentage porosity,reduced by 34%,59%,56%,22%,and 62%,respectively,at 30 Hz frequency compared with stationary casting.Mechanical tests of the cast samples showed that the yield strength(YS),ultimate tensile strength(UTS),percentage elongation(%EL),and microhardness(HV)increased by 8%,13%,17%,and 16%,respectively,at 30 Hz frequency compared with stationary casting.The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets,cleavage facets,ductile tearing,and dimple morphologies.The presence of small dimples showed that plastic deformation occurred before fracture.
基金This work was funded by the National Natural Science Foundation of China(Nos.52075198,52271102 and 52205359)the China Postdoctoral Science Foundation(No.2021M691112).
文摘Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.
文摘Energy preservation is one of the key components in developing eco-friendly machines.In industry,the majority of machines lose a considerable amount of energy through mechanical vibrations.However,the wasted energy through vibration can be utilized as a renewable energy source to compensate for the overall energy loss.The research work presented in this paper discusses the ability to design a linear power generator utilizing Nd Fe-B magnets,which can generate energy through mechanical vibrations.A pilot model was developed and simulated to understand the efficiency and limitation.The results showed that the model could reduce 14% rotor bulk with a marginal impact on the current generation.
基金National Natural Science Foundation of China (50672131)
文摘Al2O3/YSZ composite ceramics was fabricated with combustion synthesis technology, and the influences of mechanical vibration on its microstructures and properties were investigated. It is found that under the mechanical vibration of ever-increasing frequency, increasing combustion temperature, accelerating ceramics/metal liquid-liquid separation and quickening ceramic solidification could not only reduce the average diameter and the size distribution of aligned ZrO2 nano-micron fibers in rod-shaped Al2O3 matrix grains, but also make the randomly-oriented rod-shaped grains finer and increase their aspect ratios. As a result, a remarkable increase in flexural strength and fracture toughness of the ceramics can be observed.
基金the financial support from the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2020-05)。
文摘To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively.
基金Supported by the National Natural Science Foundation of China (No. 50635010).
文摘This paper presents the result of an experimental study on the compression of mechanical vibration signals. The signals are collected from both rotating and reciprocating machineries by the accelerometers and a data acquisition (DAQ) system. Four optimal sparse representation methods for compression have been considered including the method of frames ( MOF), best orthogonal basis ( BOB), matching pursuit (MP) and basis pursuit (BP). Furthermore, several indicators including compression ratio (CR), mean square error (MSE), energy retained (ER) and Kurtosis are taken to evaluate the performance of the above methods. Experimental results show that MP outperforms other three methods.
基金Funded by the Natural Science Foundation of China (No. 39770206).
文摘The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli at all those frequencies have a larger total number and a larger total length of roots and a smaller permeability of root plasma-membrane, compared with those cultivated in an environment without vibration stress. Vibration at respectively 1 Hz, 2 Hz, 3 Hz and 4 Hz enhances root activity and the 3 Hz vibration is the most favorable. There is an obvious negative correlation between root activity and permeability of root plasma-membrane. The effects may be explained by the likelihood that mechanical Vibration at an appropriate frequency facilitates roots' absorbing water and minerals which are indispensable to inducing and synthesizing in roots some active substances favorable to growth. Nevertheless, overstress damages the integrity of root plasm-membrane, increases the permeability, and results in the disability of protecting root cells.
文摘Basic equations of energy-to-cth-power difference criterion were derived for multi-degree-of-freedom (MDOF) systems subjected to stationary Gaussian excitations with non-zero mean. Modal transform technique was used in order to reduce the unknowns. Main computational formulae were presented and suggested values of c were given. Numerical results show that the method of this paper prevails over equation difference criterion both in accuracy and in simplicity.
基金supported by 2017 Jieyang Science and Technology Innovation and Development Special Fund Project(2017xm014)2018 Key Scientific Research Platform and Project of Guangdong Universities(2018GkQNCX079)
文摘CNC machine have a fast development and is widely used in China. Generally, CNC machine tool, includs CNC lathes and CNC milling machine. CNC machine tool is a necessary tool for machining. It plays an important role in the mechanical design and machining fields. CNC machine tool is mainly composed of two parts of the machine body and the computer control system. Mechanical equipment failures usually related information such as vibration, sound, pressure, temperature performance. CNC machine tool vibration monitoring system with piezoelectric accelerometer, the eddy current displacement sensor, signal amplifier, signal conditioning modules. We can take an advantage of the CNC machine tool vibration monitoring system for vibration monitoring and fault diagnosis of CNC machine tools.
文摘When material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a system is transformed to static problem by using Newmark method. In order to improve the computational efficiency and to save storage, the Conjugate Gradient (CG) method is presented. The CG is an effective method for solving a large system of linear equations and belongs to the method of iteration with rapid convergence and high precision. An example is given and calculated results are compared to validate the proposed methods.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金the financial supported by the Natural Science Foundation of Hebei Province,China(No.E2017202011)
文摘Nickel-based alloys exhibit excellent high-temperature stxengtfi and oxidation resistance; however, because of coarse grains and severe segregation in daeir welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechaxtical properties ofinckel-based alloy welded joints, sodium daiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechaxtical vibration to be investigated. On the basis of the results, the grain refinement mechan- ism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under wxious vibration modes and parameters was investigated. Compared witfi the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher haxdness distxibution was also achieved under the vibration conditions. In addition, the 7' phase exhibited a dispersed distribution and segregation was improved in the welded joints witfi vibration assistance. The results demonstxated that the generation of free crystals caused by vibration in the nucleation stage was the main mechaxtism of grain refinement. Also, free equiaxed grains and a dispersed 7' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys.
基金This project is financially supported by the National Natural Science Foundation of China
文摘An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
文摘The goal of this paper is to enhance a practical nominal characteristic trajectory following(NCTF) controller that is specifically designed for two-mass point-to-point positioning systems. A nominal characteristics trajectory contained in the NCTF controller acts as movement/motion reference and a compensator is utilized to force the object to detect and follow the reference/desired trajectory. The object must follow and track closely and should be as fast as possible. The NCTF controller is designed with two different intelligent based compensator approaches which are fuzzy logic and extended minimal resource allocation network. The proposed controller which is NCTF are compared with the conventional proportional integral compensator. Then the results of simulation are discussed for the positioning performances. The inertia variations due to the effect of the design parameters are also assessed to see the robustness of controllers. The results show that the NCTF control method designed from an intelligent based compensator has a better positioning performance in terms of percentage of overshoot, settling time, and steady state error than the classical based compensator.