期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine 被引量:11
1
作者 Yang Renshu Li Yongliang +3 位作者 Guo Dongming Yao Lan Yang Tongmao Li Taotao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期245-252,共8页
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg... Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs. 展开更多
关键词 High stress and soft rock water immersion Failure mechanism Large and small structures Rework control
下载PDF
Mechanism of Electromagnetic Flow Control Enhanced by Electro-Discharge in Water
2
作者 Yan-Liang Ji Ben-Mou Zhou Ya-Dong Huang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期73-77,共5页
Pulsed discharge utilized to achieve large current density in the electromagnetic flow control is numerically studied. A mathematic discharge model is established to calculate the plasma channel, and an actuator is de... Pulsed discharge utilized to achieve large current density in the electromagnetic flow control is numerically studied. A mathematic discharge model is established to calculate the plasma channel, and an actuator is designed to generate the Lorentz force in the micro plasma channel. During the discharge process, the resistance in the channel decreases rapidly and a large current density appears between the discharge electrodes. After the actuator is applied in the leading edge of a flat plate, the separation region and downstream turbulent boundary layer on the plate disappear. Meanwhile, a skin-friction drag force reduction is achieved. 展开更多
关键词 Mechanism of Electromagnetic Flow control Enhanced by Electro-Discharge in water
下载PDF
Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River,China 被引量:61
3
作者 Yueping Yin Bolin Huang +4 位作者 Wenpei Wang Yunjie Wei Xiaohan Ma Fei Ma Changjun Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期577-595,共19页
The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea... The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified. 展开更多
关键词 Three Gorges Reservoir (TGR) Reservoir-induced landslide Reactivation mechanism Impulsive wave generated by landslide water level variation Risk control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部