期刊文献+
共找到13,362篇文章
< 1 2 250 >
每页显示 20 50 100
Construction Safety Management of Mechanical and Electrical Installation Projects
1
作者 Honglou Chi 《Journal of Architectural Research and Development》 2024年第2期50-54,共5页
Various industries today rely on the support of electromechanical equipment,expanding its scope of application and leading to an increase in electromechanical installation projects.However,due to the high level of exp... Various industries today rely on the support of electromechanical equipment,expanding its scope of application and leading to an increase in electromechanical installation projects.However,due to the high level of expertise required and the potential risks involved,it is crucial to emphasize safety management during construction.This paper delves into the significance of construction safety management for electromechanical installation projects,identifies common problems encountered during construction,and proposes solutions.This analysis aims to provide relevant personnel with essential guidance and references for managing electromechanical installation projects safely. 展开更多
关键词 Construction safety mechanical and electrical installation Installation engineering Engineering projects Safety management
下载PDF
Mechanical and electrical properties of Pd-Ru system doped with Zr, Mo, Y
2
作者 HU Jieqiong XIE Ming YANG Youcai ZHANG Jiming LIU Manmen 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期434-437,共4页
The effect of Zr, Mo, Y dopant on mechanical and electrical properties of Pd-Ru binary alloy was investigated in this work. The alloys were prepared in a vacuum high-frequency melting furnace. X-ray diffraction and me... The effect of Zr, Mo, Y dopant on mechanical and electrical properties of Pd-Ru binary alloy was investigated in this work. The alloys were prepared in a vacuum high-frequency melting furnace. X-ray diffraction and metallographic microscope were employed to detect the microstructures of alloys. Electric bridge and eddy current conductive instrument were employed to test the electrical resistivity, and the mechanical properties of alloys were tested by AG-X100KN-type tensile testing machine. The results show that adding rare metal elements into Pd-Ru system could refine the structure effectively and increase the melting point, density, tensile strength, and hardness of alloy, but the elongation and electrical conductivity of alloy decrease. © The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2012. 展开更多
关键词 ALLOYS Bridge circuits Doping (additives) Eddy current testing Electric conductivity Materials testing apparatus mechanical properties MOLYBDENUM PALLADIUM Solid solutions Tensile testing X ray diffraction ZIRCONIUM
下载PDF
Research and Review on the Development of Mechanical and Electrical Integration of System Function Principle and Related Technologies
3
作者 Zhihai Zhou 《International Journal of Technology Management》 2015年第10期137-139,共3页
In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science an... In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology. 展开更多
关键词 mechanical and electrical Integration system Function Development Principle.
下载PDF
Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires 被引量:9
4
作者 钞润泽 管西花 +4 位作者 管仁国 铁镝 连超 王祥 张俭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3164-3169,共6页
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced... In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively. 展开更多
关键词 alloy composition Al wires mechanical properties electrical conductivity continuous rheo-extrusion
下载PDF
Buckling behavior of micro metal wire on polymer membrane under combined effect of electrical loading and mechanical loading 被引量:2
5
作者 王庆华 岸本哲 +2 位作者 谢惠民 李艳杰 吴丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2606-2611,共6页
The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates fr... The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed. 展开更多
关键词 DELAMINATION instability modes electrical loading mechanical loading interfacial toughness
下载PDF
Effect of rare earth addition on microstructural,mechanical and electrical characteristics of Cu-6% Fe microcomposites 被引量:14
6
作者 武志玮 张进东 +1 位作者 陈翼 孟亮 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期87-91,共5页
Cu-6%Fe(mass fraction) microcomposites containing(0-0.30)% rare earth elements were prepared by cold drawing and intermediate heat treatments.Microstructure was observed, and mechanical properties and electrical c... Cu-6%Fe(mass fraction) microcomposites containing(0-0.30)% rare earth elements were prepared by cold drawing and intermediate heat treatments.Microstructure was observed, and mechanical properties and electrical conductivity were measured for alloys at various drawing strain levels.Adding rare earth elements could reduce the size of primary Fe and Cu dendrites of Cu-6%Fe.Ultimate tensile strength increased but electrical conductivity decreased with the increase of drawing strain.Rare earth additions in Cu-6%Fe slightly increased the strength at low strain and effectively improved the conductivity at high strain.Both strain hardening rate and conductivity loss of Cu-6%Fe containing rare earths were reduced at lower strain than Cu-6%Fe. 展开更多
关键词 Cu-Fe DRAWING microstructure mechanical properties electrical conductivity rare earths
下载PDF
Effect of Cerium on Mechanical Performance and Electrical Conductivity of Aluminum Rod for Electrical Purpose 被引量:15
7
作者 李鹏飞 邬志刚 +3 位作者 王云利 高喜柱 王再运 李志强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期355-357,共3页
The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, ... The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, EDS and X-ray diffractometer, the microstructure and phase composition of aluminum rod were measured and analyzed. The results indicate that the content of rare earth element Ce is between 0.05% -0.16% in the aluminum rod for electrical purpose. Its tensile strength is enhanced to some extent. The research also discovers that the tensile strength is enhanced remarkably with impurity element Si content increases. Because influence of Si is big to the conductivity, the Si content should be controlled continuously strictly in the aluminum for electrical purpose. Adding rare earth element Ce reduces the solid solubility of Si in the aluminum matrix, and the negative effect of Si on the aluminum conductor reduces effectively. So the limit of in Si content in aluminum rod for electrical purpose can be relaxed moderately. 展开更多
关键词 rare earth element aluminum rod for electrical purpose mechanical performance electrical conductivity
下载PDF
Effects of Annealing on Microstructure, Mechanical and Electrical Properties of AlCrCuFeMnTi High Entropy Alloy 被引量:5
8
作者 NONG Zldsheng NONG Zldsheng +3 位作者 ZHU Jingchuan YANG Xiawei YU Hailing LAI Zhonghong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1196-1200,共5页
The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a ho... The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element. 展开更多
关键词 high entropy alloy ANNEALING MICROSTRUCTURE mechanical properties electrical conductivity
下载PDF
Influence of t-ZrO_2 addition on mechanical property and electrical conductivity of YSZ electrolyte 被引量:1
9
作者 LU Zhixin YU Yanwen GUO Ruisong LI Hailong GUO Qian 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期378-383,共6页
8YSZ material that has high electrical conductivity is widely used as electrolytes for solid oxide fuel cells (SOFCs). But its low strength and low fracture toughness hampered the development of SOFCs. In order to fin... 8YSZ material that has high electrical conductivity is widely used as electrolytes for solid oxide fuel cells (SOFCs). But its low strength and low fracture toughness hampered the development of SOFCs. In order to find a best method to improve the capability of YSZ electrolyte, the effects of 3Y-TZP additive on the density, strength, conductivity and microstructure were studied by means of X-ray diffraction and Vicker′s hardness apparatus. The strength and conductivity of YSZ electrolyte doped with different amounts of 3Y-TZP were determined. It is shown that the samples sintered at 1450 ℃ for 2 h are the best in properties. When 3Y-TZP powders are added to the YSZ system, the results demonstrate that strength of the electrolyte increases remarkably, and the fracture toughness is improved. The electrical conductivity is lowered only slightly. The results display that the flexural strength and the fracture toughness of ceramics with 30wt.% TZP reach 300 MPa and 3.7 MPa·m1/2, respectively, and the conductivity at 1000 ℃ reaches 0.11 S·cm-1. 展开更多
关键词 YSZ Y-TZP mechanical property electrical conductivity
下载PDF
Influence of Bedding and Mineral Composition on Mechanical Properties and Its Implication for Hydraulic Fracturing of Shale Oil Reservoirs 被引量:2
10
作者 WANG Xiaoqiong XU Jianguo +6 位作者 ZHAO Chenxu LIU Tongyuan GE Hongkui SHEN Yinghao WU Shan YU Jiayao HUANG Rongyan 《Earthquake Research in China》 CSCD 2020年第2期167-186,共20页
The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the... The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the mechanical properties of the shale oil reservoir in the south of Songliao Basin is carried out. Based on the experiments and the in-situ stress analysis, the fracture propagation law of three types of shale reservoirs is obtained,and the suggestions for fracturing are put forward. The results have shown that the fracture propagation of pure shale and low mature reservoir is easy to open along the bedding plane under compression loading,which is greatly influenced by the bedding. Sand-bearing shale is slightly better,the fractures of which are not easy to open along the bedding plane. The mechanical experimental results show that all the samples have the characteristics of low compressive strength,low Young’s modulus and strong anisotropy,indicating that the shale oil reservoir is certain plastic,which is related to its high clay mineral content and controlled by the bedding development. Compared with pure shale and low mature shale,the sandbearing shale has less clay content and less developed bedding,which maybe the main reason for its slightly better brittleness. Overall,the expansion of hydraulic fracture is controlled by in-situ stress and bedding. Because of the development of bedding,it is easy to form horizontal fractures. Thus it is not suitable for horizontal well fracturing.Because of the high content of clay minerals,the applicability of conventional slick hydraulic fracturing fluid is poor. It is suggested to use vertical well or directional well to carry out volume fracturing. In this way,the effect of bedding can be effectively used to open and connect the bedding and form a larger fracture network. 展开更多
关键词 Shale reservoir mechanical properties Fracture hydraulic fracturing Horizontal well BEDDING
下载PDF
Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites 被引量:3
11
作者 Hemant Pal Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1132-1140,共9页
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ... The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element. 展开更多
关键词 metal matrix composites carbon nanotubes mechanical properties coefficient of thermal expansion electrical conductivity
下载PDF
Mechanical and hydraulic properties of fault rocks under multi‑stage cyclic loading and unloading 被引量:1
12
作者 Wentao Hou Dan Ma +3 位作者 Qiang Li Jixiong Zhang Yong Liu Chenyao Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期151-170,共20页
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin... The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function. 展开更多
关键词 Multi-stage cyclic loading and unloading Fault rocks mechanical properties hydraulic properties Energy dissipation
下载PDF
Effect of CF and RPP on the Mechanical and Electrical Properties of Smart Aggregate 被引量:2
13
作者 王海峰 MEI Zhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期437-444,共8页
By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The stu... By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The study shows that Z type aggregate is more sensitive to the feedback of external force than the prism aggregate in the same loading environment, and it indicates that Z type aggregate is more suitable for the research and application of concrete health monitoring. Although the incorporation of RPP would cause the compressive strength of the aggregates and the elastic modulus of hardened cement mortar to reduce slightly within the dosage of RPP by 2.25% because of the polymer film formed in the internal system, this would improve the deformability of the aggregates. In the early loading stage(in the first 60 seconds), the intelligent concrete specimens implanted with Z type smart aggregate do not show higher sensitivity as expected, although the resistance change rate changes a little bit more, the overall of it is still in balance. Adding RPP could improve the flexibility of smart aggregates exactly, and it plays an active role in prolonging the life of the smart aggregates. By implanting Z type aggregates the damage and failure of the concrete structure could be predicted accurately in this study. The results of this paper will help to promote further research and application of intelligent concrete. 展开更多
关键词 carbon fiber(CF) redispersible polymer powder(RPP) mechanical and electrical properties smart aggregate intelligent concrete
下载PDF
Electrical, Thermal and Mechanical Properties of CNT Treated Prepreg CFRP Composites 被引量:2
14
作者 Yelda Akcin Sukru Karakaya Omer Soykasap 《Materials Sciences and Applications》 2016年第9期465-483,共20页
This study is part of Smart Intelligent Aircraft Structures (SARISTU) project, which aims considerable improvements in aircraft damage tolerance, electrical conductivity and weight reduction besides producibility in i... This study is part of Smart Intelligent Aircraft Structures (SARISTU) project, which aims considerable improvements in aircraft damage tolerance, electrical conductivity and weight reduction besides producibility in industrial scale. In this study, the effect of multiwalled carbon nanotube reinforcement on electrical, thermal and mechanical properties of T800/M21 carbon fibre reinforced plastic is studied experimentally. T800/M21 is a commercial prepreg carbon fibre/epoxy composite material considered for CNT treatment by means of CNT-doped thermoplastic-based dry powder. The CNTs are deposited on top of prepreg material uniformly using a controlled spraying machine selecting the best state-of-the art and innovative performing technology from the candidate technologies within the project. The electrical conductivity of the composite material with/without CNT is measured in longitudinal, transverse and thickness directions. The changes occurring in the electrical conductivity of the composite materials are investigated. In order to investigate thermal behaviour of the composite materials, differential scanning calorimetry and thermogravimetric analyses are performed. Detailed thermal analysis is conducted for with/without carbon nanotube reinforced material to obtain the thermal conductivity, specific heat and thermal expansion coefficient of the material. Finally, the effect of carbon nanotube reinforcement on mechanical behaviours is studied by tensile, bending and shear tests. 展开更多
关键词 Carbon Nanotubes electrical Properties Thermal Properties mechanical Properties CFRP
下载PDF
Analysis on the Effect of Yiqi Huoxue Decoction Combined with Neuromuscular Electrical Stimulation in Improving ICU-Acquired Debility in Mechanically Ventilated Patients
15
作者 Fan Jiang 《Journal of Clinical and Nursing Research》 2024年第2期206-211,共6页
Objective:To investigate the effect of Yiqi Huoxue decoction combined with neuromuscular electrical stimulation on improving intensive care unit(ICU)acquired debility in mechanically ventilated patients.Methods:50 pat... Objective:To investigate the effect of Yiqi Huoxue decoction combined with neuromuscular electrical stimulation on improving intensive care unit(ICU)acquired debility in mechanically ventilated patients.Methods:50 patients who were admitted to the ICU and received mechanical ventilation treatment in our hospital from June 2022 to June 2023 and were complicated with ICU-acquired neurasthenia were selected,and randomly grouped using the randomized envelope method into two groups:control group with 25 patients who received neuromuscular electrical stimulation alone;observation group with 25 patients who received the traditional Chinese medicine Yiqi Huoxue decoction.Comparison indexes:treatment efficiency,degree of emotional recovery(APACHEⅡscore),muscle strength status(MRC score),motor status(FAC rating),and self-care ability(BI index score).Results:The treatment efficiency of patients in the observation group patients was higher as compared to those in the control group(P<0.05).There was no significant difference in the comparison of the results of the scores(ratings)of each index between the two groups before treatment(P>0.05).After the treatment,the APACHEⅡscores of patients in the observation group were significantly lower as compared to those in the control group,while the MRC scores,FAC ratings,and BI index scores were higher in the observation group than those of the control group patients(P<0.05).Conclusion:The combined application of Yiqi Huoxue decoction and neuromuscular electrical stimulation in the treatment of patients with ICU-acquired neurasthenia complicated by mechanical ventilation significantly enhanced the clinical efficacy,the patient’s muscle strength,motor status,and ability of self-care.Hence,it has high application value and is worthy to be popularized. 展开更多
关键词 Yiqi huoxue decoction Neuromuscular electrical stimulation mechanical ventilation ICU-acquired neurasthenia
下载PDF
Review of Power Supply and Distribution Construction Technology for Highway Electromechanical Engineering
16
作者 Li Liu 《Journal of Electronic Research and Application》 2024年第2期27-32,共6页
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan... In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology. 展开更多
关键词 HIGHWAY mechanical and electrical engineering Power supply and distribution construction technology Construction process
下载PDF
ELECTRICAL AND MECHANICAL PROPERTIES OF POLYANILINE FILMS——EFFECT OF NEUTRAL SALTS ADDED DURING POLYMERIZATION
17
作者 万梅香 刘丽娟 王军 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1998年第1期1-8,共8页
The electrical and mechanical properties of polyaniline (PANI) films synthesized by the presence of the selected neutral salts in the polymerization were measured as a function of the properties and the concentration ... The electrical and mechanical properties of polyaniline (PANI) films synthesized by the presence of the selected neutral salts in the polymerization were measured as a function of the properties and the concentration of the selected neutral salts, and the protonation state. It was found that both the electrical and mechanical properties of PANI films were enhanced by adding neutral salts in the polymerization. The adding of the neutral salts in the polymerization resulted in extended conformation of polymer chain and increasing of molecular weight of PANI, which may be the reasons why the electrical and mechanical properties of PANI films were improved by the presence of neutral salts in the polymerization. (Author abstract) 11 Refs. 展开更多
关键词 POLYANILINE electrical and mechanical properties neutral salts
下载PDF
Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor 被引量:1
18
作者 杨秀清 骆敏舟 +1 位作者 梅涛 姚达毛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第3期334-340,共7页
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision character... The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform. 展开更多
关键词 CO-SIMULATION mechanical-hydraulic coupling PID control of integral separation hydraulic synchronization servo system
下载PDF
The Electrical and Mechanical Alignment and Accuracy Detection of Numerial Control Machine Tool 被引量:1
19
作者 XU Liang-xiong ZHOU Xiang 《International Journal of Plant Engineering and Management》 2012年第1期44-49,共6页
In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignme... In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool. 展开更多
关键词 electrical and mechanical alignment parameter adjusting numerical control lathe accuracy debugging and performance examination
下载PDF
Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking 被引量:22
20
作者 ZHANG Jianlong YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期42-49,共8页
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th... Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective. 展开更多
关键词 hybrid electric vehicle regenerative braking anti-lock braking fuzzy logic control electro-mechanical hybrid anti-lock braking
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部