The effects of the trace elements, P, S and Si,on the solidification, segregation,microstructure and mechanical properties of GH761 and In718 alloys were studied.It was found that the segregation of the P,S and Si can...The effects of the trace elements, P, S and Si,on the solidification, segregation,microstructure and mechanical properties of GH761 and In718 alloys were studied.It was found that the segregation of the P,S and Si can be greatly aggravated or relieved by the precipitation taking place during the solidification. In the heat treated state,P enhances the intergranular precipitation in the GH761 alloy.The refinement of P in In718 alloy causes the appearance of a film-like δphase.Si increases the intergranular precipitation of the M_6C and the Laves Phase in the In718 alloy.P, S and Si play diverse roles in the tensile and the stress rupture properties of the GH761 and In718 alloys. The most striking effect is that P significantly prolongs the stress rupture lives of the GH761 and In718 alloys in a wide range of 0.00050.015 wt% .The mechanisms by which P,S and Si influence the superalloys are discussed in the text.展开更多
ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that b...ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.展开更多
Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enh...Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.展开更多
MoSi_2 and 30 vol.% SiC_p/MoSi_2 composite have been fabricated by hot pressing (HP).A simulated thermal cycle experiment has been carried out at 1100℃ for 32 h to investigate the stability of the composite system.Co...MoSi_2 and 30 vol.% SiC_p/MoSi_2 composite have been fabricated by hot pressing (HP).A simulated thermal cycle experiment has been carried out at 1100℃ for 32 h to investigate the stability of the composite system.Comparative,mechanical tests,including measurement of flexural strength and fracture toughness at room temperature,have been conducted between materials before and after thermal cycle.It is shown that both the strength and fracture toughness are enhanced by the addition of SiC particles. After thermal cycle,the strength of both materials increases and the toughness decreases by about 20%.The result that the composite system is not corroded intensely by thermal cycle shows that SiC particles are feasible reinforcement for MoSi2.展开更多
The effects of La rich rare earth alloys on structure and mechanical properties of ZL101A alloy in as cast, heat treated and remelted states were investigated. The appropriate quantity of the addition of RE alloys a...The effects of La rich rare earth alloys on structure and mechanical properties of ZL101A alloy in as cast, heat treated and remelted states were investigated. The appropriate quantity of the addition of RE alloys and the reasonable heat treatment parameters for integral casting wheel made by low pressure die casting have been suggested.展开更多
This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 parti...This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.展开更多
A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using ...A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using this method in this paper. Moreover, these results are compared with those results of Charpy V-notch impact test and their correlation is discussed.展开更多
Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the ro...Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures...In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.展开更多
The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale an...The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale and Qingshankou continental shale were studied by X-ray diffractometer(XRD),field emission scanning electron microscope(FE-SEM)with mineral analysis system,and nanoindentation.Additionally,the typical bedding layers area was properly stratified using Focused Ion Beam(FIB),and the effects of microstructure and mechanical properties on the distribution patterns of bedding fractures were analyzed.The results show that the Longmaxi marine shale sample contains more clay mineral grains,while the Qingshankou continental shale sample contains more hard brittle mineral grains such as feldspar.For Longmaxi marine shale sample,hard brittle minerals with grain sizes larger than 20μm is18.24%and those with grain sizes smaller than 20μm is 16.22%.For Qingshankou continental shale sample,hard brittle minerals with grain sizes larger than 20μm is 40.7%and those with grain sizes smaller than 20μm is 11.82%.In comparison to the Qingshankou continental shale sample,the Longmaxi marine shale sample has a lower modulus,hardness,and heterogeneity.Laminated shales are formed by alternating coarse-grained and fine-grained layers during deposition.The average single-layer thickness of Longmaxi marine shale sample is greater than Qingshankou continental shale sample.The two types of shale have similar bedding fractures distribution patterns and fractures tend to occur in the transition zone from coarse-grained to fine-grained deposition.The orientation of the fracture is usually parallel to the bedding plane and detour occurs in the presence of hard brittle grains.The fracture distribution density of the Longmaxi marine shale sample is lower than that of the Qingshankou continental shale sample due to the strong heterogeneity of the Qingshankou continental shale.The current research provides guidelines for the effective development of shale reservoirs in various sedimentary environments.展开更多
Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC...Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.展开更多
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z...Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.展开更多
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi...A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.展开更多
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all...The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.展开更多
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac...The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.展开更多
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and...We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.展开更多
文摘The effects of the trace elements, P, S and Si,on the solidification, segregation,microstructure and mechanical properties of GH761 and In718 alloys were studied.It was found that the segregation of the P,S and Si can be greatly aggravated or relieved by the precipitation taking place during the solidification. In the heat treated state,P enhances the intergranular precipitation in the GH761 alloy.The refinement of P in In718 alloy causes the appearance of a film-like δphase.Si increases the intergranular precipitation of the M_6C and the Laves Phase in the In718 alloy.P, S and Si play diverse roles in the tensile and the stress rupture properties of the GH761 and In718 alloys. The most striking effect is that P significantly prolongs the stress rupture lives of the GH761 and In718 alloys in a wide range of 0.00050.015 wt% .The mechanisms by which P,S and Si influence the superalloys are discussed in the text.
文摘ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored.
文摘Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.
文摘MoSi_2 and 30 vol.% SiC_p/MoSi_2 composite have been fabricated by hot pressing (HP).A simulated thermal cycle experiment has been carried out at 1100℃ for 32 h to investigate the stability of the composite system.Comparative,mechanical tests,including measurement of flexural strength and fracture toughness at room temperature,have been conducted between materials before and after thermal cycle.It is shown that both the strength and fracture toughness are enhanced by the addition of SiC particles. After thermal cycle,the strength of both materials increases and the toughness decreases by about 20%.The result that the composite system is not corroded intensely by thermal cycle shows that SiC particles are feasible reinforcement for MoSi2.
文摘The effects of La rich rare earth alloys on structure and mechanical properties of ZL101A alloy in as cast, heat treated and remelted states were investigated. The appropriate quantity of the addition of RE alloys and the reasonable heat treatment parameters for integral casting wheel made by low pressure die casting have been suggested.
文摘This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.
文摘A micro shear testing method which can suit to measure the mechanical properties of heterogeneous materials is introduced, and the properties in each zone of welded joint for CO2 arc welding can be evaluated by using this method in this paper. Moreover, these results are compared with those results of Charpy V-notch impact test and their correlation is discussed.
基金This work was supported by the fund of the National Natural Science Foundation of China(51974196)Major Program of National Natural Science Foundation of China(U22A20188)+1 种基金Science and Technology Innovation Teams of Shanxi Province(202304051001025)Central Government Guides the Special Fund Projects of Local Scientific and Technological Development(YDZX20191400002149).
文摘Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
基金financially supported by National Key R&D Program of China(No.2021YFB3701100)Beijing Municipal Natural Science Foundation(No.2202004).
文摘In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074315&U19B6003)。
文摘The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale and Qingshankou continental shale were studied by X-ray diffractometer(XRD),field emission scanning electron microscope(FE-SEM)with mineral analysis system,and nanoindentation.Additionally,the typical bedding layers area was properly stratified using Focused Ion Beam(FIB),and the effects of microstructure and mechanical properties on the distribution patterns of bedding fractures were analyzed.The results show that the Longmaxi marine shale sample contains more clay mineral grains,while the Qingshankou continental shale sample contains more hard brittle mineral grains such as feldspar.For Longmaxi marine shale sample,hard brittle minerals with grain sizes larger than 20μm is18.24%and those with grain sizes smaller than 20μm is 16.22%.For Qingshankou continental shale sample,hard brittle minerals with grain sizes larger than 20μm is 40.7%and those with grain sizes smaller than 20μm is 11.82%.In comparison to the Qingshankou continental shale sample,the Longmaxi marine shale sample has a lower modulus,hardness,and heterogeneity.Laminated shales are formed by alternating coarse-grained and fine-grained layers during deposition.The average single-layer thickness of Longmaxi marine shale sample is greater than Qingshankou continental shale sample.The two types of shale have similar bedding fractures distribution patterns and fractures tend to occur in the transition zone from coarse-grained to fine-grained deposition.The orientation of the fracture is usually parallel to the bedding plane and detour occurs in the presence of hard brittle grains.The fracture distribution density of the Longmaxi marine shale sample is lower than that of the Qingshankou continental shale sample due to the strong heterogeneity of the Qingshankou continental shale.The current research provides guidelines for the effective development of shale reservoirs in various sedimentary environments.
文摘Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.
基金the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)by the Strategic Academic Leadership Program“Priority 2030”(No.K2-2022-001)For the sample preparation and TEM investigation,the authors thank the Collective Use Equipment Center“Material Science and Metallurgy”for the equipment modernization program represented by the Ministry of Higher Education and Science of Russian Federation(No.075-15-2021-696).
文摘Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275349,52035005)Key Research and Development Program of Shandong Province of China(Grant No.2021ZLGX01)Qilu Young Scholar Program of Shandong University of China.
文摘A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.
基金supported by the National Natural Science Foundation of China(Nos.52271107 and 52205392)the Natural Science Foundation of Shandong Province(No.ZR2021ME241)the Bintech-IMR R&D Program(No.GYY-JSBU-2022-012).
文摘The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.
基金Funded by the National Natural Science Foundation of China(No.52071065)Fundamental Research Funds for the Central Universities(No.N2007007)。
文摘The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.
基金Funded by the Zhaoqing Xijiang Innovation and Entrepreneurship Team Project Funding of China(No.2017A0109004)。
文摘We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.