期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
1
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Investigations of the mechanical response of dummy HTPB propellant grain under ultrahigh acceleration overload conditions using onboard flight-test measurements
2
作者 Yiming Zhang Ningfei Wang +3 位作者 Weihua Ma Ran Wang Long Bai Yi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期473-484,共12页
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen... In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process. 展开更多
关键词 Gun-launched flight test Dummy HTPB propellant Onboard measurements Utrahigh overload Mechanical response
下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:1
3
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction Dynamic response mode response mechanism
下载PDF
Earthquake Emergency Response System of High-speed Railway by Least Square Method
4
作者 Qizhou Hu Yikai Wu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期1-11,共11页
This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthqua... This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthquake emergency response, the technical operational procedures for HSR seismic emergency response are proposed. The quantity, scale, and location of HSR earthquake emergency response mechanism are defined, and the corresponding emergency response system is built. In particular, the earthquake emergency response system can conduct real-time continuous dynamic monitoring of seismic activity along the railway. When earthquake occurs, the intensity of the ground motion is detected by the system. When the earthquake monitoring value reaches the earthquake alarm threshold, it will send an alarm signal to the dispatch center, and the emergency power supply will be forced to cut off. The earthquake emergency response system will continue to monitor the follow-up ground motion acceleration. The system provides the operation scheduling center with a basis for train operation control to resume operation after stopping. The monitoring result of the system reduces the disaster, and the secondary disaster is caused by the earthquake. This paper improves the HSR response mechanism in detecting earthquake disasters. The result improves the ability of HSR to deal with earthquake disasters, and reduces casualties and economic and property loss caused by earthquake disasters. 展开更多
关键词 high-speed railway(HSR) earthquake monitoring emergency response mechanism
下载PDF
A review of in situ carbon mineralization in basalt
5
作者 Xiaomin Cao Qi Li +1 位作者 Liang Xu Yongsheng Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1467-1485,共19页
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt... Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research. 展开更多
关键词 Carbon mineralization BASALT CO_(2)-fluid-basalt interaction Petrophysical evolution Mechanical response Carbon capture and storage(CCS)
下载PDF
Unleashing the Potential of Unidirectional Mechanical Materials: Breakthroughs and Promising Applications
6
作者 Sunil Harripersad 《Materials Sciences and Applications》 2024年第4期66-86,共21页
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ... The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use. 展开更多
关键词 Mechanically One-Way Materials Nonreciprocal Mechanical responses Directed Sound Propagation Controlled Mass Transport Energy Harvesting Structural Engineering Economic Viability Environmental Impact
下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:2
7
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 Mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy High-speed impact loading
下载PDF
Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response 被引量:2
8
作者 Yu Wang Qian Li +5 位作者 Fuliang Liu Shanshan Jin Yimei Zhang Ting Zhang Yunyan Zhu Yanheng Zhou 《International Journal of Oral Science》 SCIE CAS CSCD 2018年第4期244-252,共9页
The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression,growth and differentiation, has been extensively investigated. However, metabolic regulation... The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression,growth and differentiation, has been extensively investigated. However, metabolic regulation in mechanobiology remains largely unexplored. Here, we identified glucose transporter 1(GLUT1)—the primary glucose transporter in various cells—as a novel mechanosensitive gene in orthodontic tooth movement(OTM). Using an in vivo rat OTM model, we demonstrated the specific induction of Glut1 proteins on the compressive side of a physically strained periodontal ligament. This transcriptional activation could be recapitulated in in vitro cultured human periodontal ligament cells(PDLCs), showing a time-and dose-dependent mechanoresponse. Importantly, application of GLUT1 specific inhibitor WZB117 greatly suppressed the efficiency of orthodontic tooth movement in a mouse OTM model, and this reduction was associated with a decline in osteoclastic activities. A mechanistic study suggested that GLUT1 inhibition affected the receptor activator for nuclear factor-κ B Ligand(RANKL)/osteoprotegerin(OPG)system by impairing compressive force-mediated RANKL upregulation. Consistently, pretreatment of PDLCs with WZB117 severely impeded the osteoclastic differentiation of co-cultured RAW264.7 cells. Further biochemical analysis indicated mutual regulation between GLUT1 and the MEK/ERK cascade to relay potential communication between glucose uptake and mechanical stress response. Together, these cross-species experiments revealed the transcriptional activation of GLUT1 as a novel and conserved linkage between metabolism and bone remodelling. 展开更多
关键词 Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response OTM RANKL
下载PDF
Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils 被引量:1
9
作者 Mengdie NIU Jing XIA +1 位作者 Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期235-250,共16页
Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,... Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,and a two-dimensional(2D)axisymmetric electro-magneto-thermal model is presented.The effects of the constituent materials,background field,and coil size are analyzed.An elastoplastic mechanical model is used to study the corresponding mechanical responses during the quench propagation.The variations of the temperature and strain in superconducting layers are compared.The results indicate that the radial strain evolutions can reflect the transverse quench propagation and the tensile hoop and radial stresses in superconducting layers increase with the quench propagation.The possible damages are discussed with the consideration of the effects of the background field and coil size.It is concluded that the high background field significantly increases the maximum tensile hoop and radial stresses in quenching coils and local damage may be caused. 展开更多
关键词 rare earth barium copper oxide(REBCO)pancake coil hoop stress quench characteristic mechanical response radial stress
下载PDF
Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling 被引量:1
10
作者 马鑫 钱乙余 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期471-474,共4页
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of... Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test. 展开更多
关键词 finite element simulation surface mounted solder joint thermal cycling mechanical response
下载PDF
Mechanical responses of the bio-nano interface: A molecular dynamics study of graphene-coated lipid membrane 被引量:3
11
作者 Zhigong Song Yanlei Wang Zhiping Xu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第6期231-235,共5页
Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critic... Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations. In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic coating provides remarkable resistance to the pressure or indentation loads, We find that graphene loads, and the intercalated water layer offers additional protection. These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms, which provide a basis for the rational design of bionanotechnology- enabled aoolications such as biomedical devices and nanotheraoeutics. 展开更多
关键词 Cell membrane Lipid bilayer Graphene Mechanical responses Bio-nano interfaces
下载PDF
Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-Ⅱ Delamination 被引量:2
12
作者 周伟 吕智慧 +3 位作者 王雅瑞 刘然 陈维业 李晓彤 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期73-76,共4页
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi... Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites. 展开更多
关键词 der DELAMINATION Acoustic response and Micro-Damage Mechanism of Fiber Composite Materials under Mode
下载PDF
DYNAMIC RESPONSE OF ROLLER GEAR INDEXING CAM SYSTEM CONSIDERING CLEARANCE AND MOTOR CHARACTERISTIC 被引量:4
13
作者 Chang Zongyu Civil Aviation College,Nanjing University of Aeronautics and Astronautics Zhang Ce Yang Yuhu Wang Yuxin Tianjin University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期189-192,共4页
The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib... The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs. 展开更多
关键词 Roller gear indexing cam mechanism Clearance Motor characteristic Dynamic response
下载PDF
In vivo evidence of IGF-I–estrogen crosstalk in mediating the cortical bone response to mechanical strain 被引量:1
14
作者 Subburaman Mohan Chetan Girijanand Bhat +1 位作者 Jon E Wergedal Chandrasekhar Kesavan 《Bone Research》 SCIE CAS 2014年第1期55-60,共6页
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling... Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6% in both control pOVX (P〈0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7 %-8% and an 11%-13% (P〈0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P〈0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P〈0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading. 展开更多
关键词 BONE IGF estrogen crosstalk in mediating the cortical bone response to mechanical strain
下载PDF
Parametric Study on the Effect of Aspect Ratio of Selected Cooling Hole Geometries on the Mechanical Response of an Automobile Aluminium Alloy Wheel 被引量:2
15
作者 S. O. Igbudu D. A. Fadare 《Open Journal of Applied Sciences》 2021年第1期41-57,共17页
Aluminium alloy wheels are increasingly popular for their light weight and good thermal conductivity. Cooling Holes (CH) are introduced to reduce their weight without compromising structural integrity. Literature is s... Aluminium alloy wheels are increasingly popular for their light weight and good thermal conductivity. Cooling Holes (CH) are introduced to reduce their weight without compromising structural integrity. Literature is sparse on the effect of aspect ratio (AR) of CHs on wheels. This, work, therefore, attempts to undertake a parametric study of the effect of aspect ratio (AR) on the mechanical response of an aluminium alloy wheel with triangular, quadrilateral and oval-shaped CHs. Three-dimensional wheel models (6JX14H2ET42) with triangular, quadrilateral and oval shaped CH (each with CH area of 2229 mm<sup>2</sup>) were generated, discretized, and analyzed by FEM using Creo Elements/Pro 5.0 to determine the mechanical response at the inboard bead seat at different ARs of 1, 0.5, 0.33 and 0.25, each for quadrilateral-CH and oval-CH, at a static Radial Load of 4750 N and Inflation Pressures of 0.3 and 0.15 MPa, respectively. The study shows that the magnitude of stress and displacement is affected by shape and AR of CH. From the results, it could be established that oval-shaped-CH wheel at AR of 0.5 offers greater prospect in wheel design as it was least stressed and deformed and, that the CH combination with highest integrity was the oval-CH and quadrilateral-CH at AR of 0.5. 展开更多
关键词 Aspect ratio Mechanical response. Aluminum alloy wheel
下载PDF
Alpine vegetation responses to snow phenology in the Chinese Tianshan mountainous region
16
作者 ZHANG Bo LI Xue-mei +2 位作者 LI Chao NYIRANSENGIYUMVA Christine QIN Qi-yong 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1307-1323,共17页
Investigating the interrelation between snow and vegetation is essential to explain the response of alpine ecosystems to climate change.Based on the MOD10 A1 daily cloud-free snow product and MOD13 A1 NDVI(normalized ... Investigating the interrelation between snow and vegetation is essential to explain the response of alpine ecosystems to climate change.Based on the MOD10 A1 daily cloud-free snow product and MOD13 A1 NDVI(normalized difference vegetation index)data,this study analysed the spatial and temporal patterns of snow phenology including snow onset date,snow end date,snow cover days,and vegetation phenology including the start of growing season,the end of growing season and the length of growing season in the Chinese Tianshan Mountainous Region(CTMR)from 2002 to 2018,and then investigated the snow phenological effects on the vegetation phenology among different ecogeographic zones and diverse vegetation types.The results indicated that snow onset date was earlier at higher elevations and later at lower elevations,while snow end date showed opposite spatial distribution characteristics.The end of growing season occurred later on the northwest slope of the CTMR and the Yili Valley.The earliest end of growing season was in the middle part of the CTMR.A long growing season was mainly distributed along the northern slope and the Yili Valley,while a short growing season was concentrated in the middle part of the CTMR.The response of vegetation phenology to changes in snow phenology varied among vegetation types and ecogeographic zones.The effect of snow phenology on vegetation phenology was more significant in IID5(Yili Valley)than in the other ecogeographic zones.A negative correlation was observed between the start of growing season and snow end date in nearly 54.78%of the study area,while a positive correlation was observed between the start of growing season and the snow end date in 66.85%of the study area.The sensitivity of vegetation phenology to changes in snow cover varied among different vegetation types.Snow onset date had the greatest effect on the start of growing season in the four vegetation cover types(alpine meadows,alpine steppes,shrubs,and alpine sparse vegetation),whereas the snow cover days had the least impact.Snow end date had the greatest impact on the end of growing season in the alpine steppes and shrub areas.The study results are helpful for understanding the vegetation dynamics under ongoing climate change,and can benefit vegetation management and pasture development in the CTMR. 展开更多
关键词 Snow phenology Vegetation phenology Climate change response mechanism Grey correlation analysis Chinese Tianshan Mountainous Region
下载PDF
Supporting structure failure caused by the squeezing tunnel creep and its reinforcement measure 被引量:1
17
作者 ZHAO Jin-peng TAN Zhong-sheng +1 位作者 LI Lei WANG Xiu-ying 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1774-1789,共16页
Tunnels deeply buried have high crustal stress and are prone to large deformation disasters when encountering soft rock.The large deformation phenomenon during the construction process of the Maoxian Tunnel on the Che... Tunnels deeply buried have high crustal stress and are prone to large deformation disasters when encountering soft rock.The large deformation phenomenon during the construction process of the Maoxian Tunnel on the Chengdu-Lanzhou Railway is particularly evident.This article focuses on the large deformation problem of the No.1 inclined shaft of the Maoxian Tunnel,and uses on-site monitoring methods to explore the reasons for tunnel structure failure,and analyzes the mechanical behavior of the tunnel structure.By using numerical simulation methods,the effectiveness of the second-layer support in resisting creep loads in tunnels was studied,and the influence of the construction time of the secondlayer support on the mechanical properties of the tunnel was discussed.The results indicate that the first-layer support in the tunnel is a structural failure caused by asymmetric deformation caused by creep,while the second-layer support has a good effect on resisting creep loads.The research results can provide a technical reference for deformation control of squeezing tunnels. 展开更多
关键词 Squeezing tunnel Mechanical responses Long-term creep Second-layer support On-site monitoring
下载PDF
Design and feasibility analysis of a new completion monitoring technical scheme for natural gas hydrate production tests
18
作者 Qiu-ping Lu Yan-jiang Yu +8 位作者 Xie Wen-wei Jin-qiang Liang Jing-an Lu Ben-chong Xu Hao-xian Shi Hao-yu Yu Ru-lei Qin Xing-chen Li Bin Li 《China Geology》 CAS CSCD 2023年第3期466-475,共10页
As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change ... As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization. 展开更多
关键词 Natural gas hydrates Depressurization test Wet-mate Directional connection Lower completion monitoring In-situ mechanical response of reservoirs Oil-gas exploration engineering The South China Sea
下载PDF
Influence of pore structures on the mechanical behavior of low-permeability sandstones:numerical reconstruction and analysis 被引量:34
19
作者 Jiangtao Zheng Yang Ju Xi Zhao 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期329-337,共9页
The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction o... The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks.An accurate reconstruction of the threedimensional porous structure is a premise for the related studies of hydraulic and mechanical properties of rocks,such as the transport properties and mechanical responses under pressures.In this paper,we present a computer procedure for reconstructing the 3D porous structure of low-permeability sandstone.Two large-size 3D models are reconstructed based on the information of a reference model which is established from computed tomography(CT)images.A self-developed finite element method is applied to analyze the nonlinear mechanical behavior of the sandstone based on its reconstructed model and to compare the results with those based on the reference model.The good consistency of the obtained mechanical responses indicates the potential of using reconstruction models to predict the influences of porous structure on the mechanical properties of low-permeability sandstone. 展开更多
关键词 Porous structure RECONSTRUCTION Mechanical response Finite element method
下载PDF
The effect of strain rate on compressive behavior and failure mechanism of CMDB propellant 被引量:2
20
作者 Heng-ning Zhang Hai Chang +2 位作者 Xiao-jiang Li Xiong-gang Wu Qi-wen He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期467-475,共9页
The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a c... The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a conventional universal testing machine and a split Hopkinson tension bar(SHPB),respectively.The derived stress-strain curves at different strain rates show a strong rate dependence,indicated that yield stress,ultimate stress and strain energy density of CMDB propellant all increase with strain rate by following a power law function,while the amplification of increase are different.The deformation and damage modes of CMDB propellant has changed from a typical ductile manner(cracking along the axial direction)to a brittle manner(maximum shear failure)with increasing of strain rate.Scanning electron microscopy(SEM)was employed to explore the microscopic failure characteristics of CMDB propellant.Under quasi-static loading,the nearly parallel micro-cracks propagating along the axial direction and the debonding of RDX particle without particle crushing can be observed.While under dynamic loading,the micro-crack is 45 angle to the axial direction,and multiple cracking modes of RDX particles appeared.Finally,the correlation between strain energy density and failure mechanisms of CMDB propellant was revealed by developing four characteristic failure modes.The findings of this study is very important to evaluate the structural integrity of CMDB propellant. 展开更多
关键词 CMDB propellant Mechanical response Strain-rate dependence Failure mechanisms
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部