North and west China has abundant coal resources, however, such resources make these regions prone to serious mine fire disasters. Although the copious sand and fly ash resources found in these areas can be used as fi...North and west China has abundant coal resources, however, such resources make these regions prone to serious mine fire disasters. Although the copious sand and fly ash resources found in these areas can be used as fire-fighting materials, conventional grouting is expensive because of water shortage and loess particles. A new compound material(i.e., a sand-suspended colloid), which comprises a mineral inorganic gel and an organic polymer, is developed in the current study to improve the quality of sand injection and reduce water wastage when grouting. The new material can steadily suspend the sand, through the addition of a small amount of colloid yielding steady sand-suspended slurry. The process of producing the slurry is convenient and quick, overcoming the shortage of sand-suspending thickeners which need heat and are difficult to produce. The space work model based on the theory of the double-electric layer is established to study the suspended mechanism of the solid particles in the sand-suspended colloid.The dispersion effect of the sand-suspended colloid is demonstrated by the incorporation of the electrostatic effect by the double-electric layer and the steric hindrance effect on the sand particles, ensuring the stability of the colloid system and the steady suspension of sand particles in the sand-suspended colloid.Mechanical analysis indicates that the sand is suspended steadily under the condition that the rock sand particles stress on the lower part of the fluid is less than the yield stress of the colloid. Finally, the fireprevention technology of sand suspension was applied and tested in the Daliuta Coal Mine, achieving successful results.展开更多
Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat...Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks.展开更多
Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room tem...Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room temperature,a mechanically mixed layer(MML)was formed to protect the surface of the samples.Under 80 N of load at room temperature,the milled Al5083 and the Al5083−5wt.%B4C samples showed evidence of abrasion with limited volume loss.In this case,the wear rates were 5.8×10−7 and 4.4×10−7 mm3/(m·N),respectively.At 200°C and under 80 N of applied load,severe wear occurred in the milled Al5083 sample,and wear rate reached 10.8×10−7 mm3/(m·N)while the Al5083−5wt.%B4C sample showed mild wear with local 3-body abrasion and the wear rate reached 5.3×10−7 mm3/(m·N).Strengthening mechanisms such as dislocation pinning and the Hall−Petch theory,high hardness and the load transfer effect were crucial in determining the wear behavior of the Al5083−5wt.%B4C composite.On the other hand,the milled Al5083 sample represented a relatively high wear rate at 200°C,which seemed to be related to the local grain growth and a drop in its hardness.展开更多
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)...To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.展开更多
When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase scree...When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase screen,an iterative optimization algorithm of phase screen position is given in this paper.Thereafter,the optimal position of phase screens is calculated under the Hufnagel-Valley5/7 and Hefei-day turbulence profile.The results show that the positions of phase screen calculated by the iterative algorithm can fit well with the turbulence profile rather than mechanically placed phase screens at equal distance.Compared with the uniform distribution of phase screens position,the residual phase error of the iterative algorithm decreases very significantly.The similarity degree between them is minimal when number of layers is equal to two.展开更多
An artificial tribological layer was formed on the worn surface during sliding,through supplying MoS_2,Fe_2O_3 or their equiponderant mixtures onto the sliding interface of H13/GCr15 steels.The effect of this tribolog...An artificial tribological layer was formed on the worn surface during sliding,through supplying MoS_2,Fe_2O_3 or their equiponderant mixtures onto the sliding interface of H13/GCr15 steels.The effect of this tribological layer on the wear behavior of H13 steel was studied.The worn surfaces and subsurfaces of H13 steel were thoroughly characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS);the wear mechanisms were explored.The research results demonstrated that tribological layer did not exist during sliding of H13 steel with no additive,but it formed with the addition of MoS_2,Fe_2O_3 or their equiponderant mixtures.When there was no tribological layer,the wear rate rapidly increased with an increase of the load.In this case,adhesive and abrasive wear prevailed.As the additives were supplied,the artificial tribological layer was observed to be immediately formed and stably existed on worn surfaces.This tribological layer presented an obvious protective function from wear and friction.Hence,the wear rate and friction coefficient were significantly decreased.MoS_2 as tribological layer seemed to present more obvious protective function than Fe_2O_3.By supplying their mixture,the artificial tribological layer possessed not only the load-carrying capacity of Fe_2O_3,but also the lubricative capacity of MoS_2.These two simultaneous capacities could improve the friction and wear properties of H13 steel further.展开更多
Ti-6Al-4V alloy(Ti64)and SUS316 L stainless steel rods were dissimilarly friction welded.Especially focusing on the detailed observation of interface microstructural evolution during the friction welding(FW),the relat...Ti-6Al-4V alloy(Ti64)and SUS316 L stainless steel rods were dissimilarly friction welded.Especially focusing on the detailed observation of interface microstructural evolution during the friction welding(FW),the relationship between the processing conditions,weld interface microstructure,and mechanical properties of the obtained joints were systematically investigated to elucidate the principle for obtaining a high joint quality in the FW of Ti64 and SUS316L.A higher friction pressure produced a lower welding temperature in the FW,hence suppressing the thick intermetallic compound layer formation.However,hard and brittle Ti64/SUS316L mechanically mixed layers generally formed especially at the weld interface periphery due to the high temperature increasing rate,high rotation linear velocity and high outward flow velocity of the Ti64.These harmful layers tended to induce the cracks/voids formation at the weld interfaces hence deteriorating the joints’mechanical properties.The rotation speed reduction and liquid CO2 cooling during the entire processing decreased the temperature increasing rate,rotation linear velocity and outward flow velocity of the Ti64 at the weld interface periphery.Therefore,they suppressed the formation of the harmful mechanically mixed layers,facilitated the homogeneous and sound interface microstructure generation,and finally produced a high-quality dissimilar joint in the FW of Ti64 and SUS316L.展开更多
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i...By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.展开更多
Dry sliding wear tests were performed for 7075Al alloy under a load of 25–250 N at 25–200℃. The wear behaviors and mechanisms under various testing conditions were explored. A mild-to-severe wear transition is noti...Dry sliding wear tests were performed for 7075Al alloy under a load of 25–250 N at 25–200℃. The wear behaviors and mechanisms under various testing conditions were explored. A mild-to-severe wear transition is noticed to occur with an increase in the load at 25–200℃. With the temperature increasing, the wear loss decreases constantly under the low load of less than 50 N. It can be suggested that the 7075 Al alloy presents a high wear resistance under a high ambient temperature and low load. Its high wear resistance is found to be attributed to the existence of mechanically mixing layer (MML). The predominant wear mechanism is adhesive and abrasive wear at room temperature. With the ambient temperature and load increasing, oxidative wear and plastic extrusive wear successively prevail due to thermal oxidation and softening of matrix.展开更多
Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled f...Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.展开更多
We examine a hierarchy of minimal conceptual models for tropical cyclone intensification.These models are framed mostly in terms of axisymmetric balance dynamics.In the first set of models,the heating rate is prescrib...We examine a hierarchy of minimal conceptual models for tropical cyclone intensification.These models are framed mostly in terms of axisymmetric balance dynamics.In the first set of models,the heating rate is prescribed in such a way to mimic a deep overturning circulation with convergence in the lower troposphere and divergence in the upper troposphere,characteristic of a region of deep moist convection.In the second set,the heating rate is related explicitly to the latent heat release of ascending air parcels.The release of latent heat markedly reduces the local static stability of ascending air,raising two possibilities in the balance framework.The first possibility is that the effective static stability and the related discriminant in the Eliassen equation for the overturning circulation in saturated air,although small,remains positive so the Eliassen equation is globally elliptic.The second possibility,the more likely one during vortex intensification,is that the effective static stability in saturated air is negative and the Eliassen equation becomes locally hyperbolic.These models help to understand the differences between the early Ooyama models of 1968 and 1969,the Emanuel,1989 model,and the later Emanuel models of 1995,1997 and 2012.They provide insight also into the popular explanation of the WISHE feedback mechanism for tropical cyclone intensification.Some implications for recent work are discussed.展开更多
基金support of the research funds provided by the National Natural Science Foundation of China (Nos. 51304071, 51304073)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology of China (No. 12KF02)
文摘North and west China has abundant coal resources, however, such resources make these regions prone to serious mine fire disasters. Although the copious sand and fly ash resources found in these areas can be used as fire-fighting materials, conventional grouting is expensive because of water shortage and loess particles. A new compound material(i.e., a sand-suspended colloid), which comprises a mineral inorganic gel and an organic polymer, is developed in the current study to improve the quality of sand injection and reduce water wastage when grouting. The new material can steadily suspend the sand, through the addition of a small amount of colloid yielding steady sand-suspended slurry. The process of producing the slurry is convenient and quick, overcoming the shortage of sand-suspending thickeners which need heat and are difficult to produce. The space work model based on the theory of the double-electric layer is established to study the suspended mechanism of the solid particles in the sand-suspended colloid.The dispersion effect of the sand-suspended colloid is demonstrated by the incorporation of the electrostatic effect by the double-electric layer and the steric hindrance effect on the sand particles, ensuring the stability of the colloid system and the steady suspension of sand particles in the sand-suspended colloid.Mechanical analysis indicates that the sand is suspended steadily under the condition that the rock sand particles stress on the lower part of the fluid is less than the yield stress of the colloid. Finally, the fireprevention technology of sand suspension was applied and tested in the Daliuta Coal Mine, achieving successful results.
基金The authors express their gratitude to the Natural Sciences and Engineering Research Council of Canada for financial support through a Discovery Grant(Grant No.06408).
文摘Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks.
基金Authors would like to appreciate the former chief of Faculty of Materials&Manufacturing Processes of the Malek-Ashtar University of Technology,Professor EHSANI and the chief of the Composite Department,Dr.POURHOSSEINI along with the Razi and Kimiazi SEM labs and mechanical properties and SEM labs of Iran University of Science and Technology.Furthermore,the authors would like to thank Professor REZAEI,Ms.HAMIDI,and Ms.DAYYANI,Mr.SA'ADAT,and Mr.ATAEI from Iran University of Science and Technology.Special thanks to Mrs.KESHAVARZ,Ms.HAMEDANIZADEH,Ms.SHABANI,Ms.SHOJAEI and Mr.GANDOMKAR for their help and support.
文摘Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room temperature,a mechanically mixed layer(MML)was formed to protect the surface of the samples.Under 80 N of load at room temperature,the milled Al5083 and the Al5083−5wt.%B4C samples showed evidence of abrasion with limited volume loss.In this case,the wear rates were 5.8×10−7 and 4.4×10−7 mm3/(m·N),respectively.At 200°C and under 80 N of applied load,severe wear occurred in the milled Al5083 sample,and wear rate reached 10.8×10−7 mm3/(m·N)while the Al5083−5wt.%B4C sample showed mild wear with local 3-body abrasion and the wear rate reached 5.3×10−7 mm3/(m·N).Strengthening mechanisms such as dislocation pinning and the Hall−Petch theory,high hardness and the load transfer effect were crucial in determining the wear behavior of the Al5083−5wt.%B4C composite.On the other hand,the milled Al5083 sample represented a relatively high wear rate at 200°C,which seemed to be related to the local grain growth and a drop in its hardness.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.
基金Project supported by the National Natural Science Foundation of China(Grant No.61308082)
文摘When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase screen,an iterative optimization algorithm of phase screen position is given in this paper.Thereafter,the optimal position of phase screens is calculated under the Hufnagel-Valley5/7 and Hefei-day turbulence profile.The results show that the positions of phase screen calculated by the iterative algorithm can fit well with the turbulence profile rather than mechanically placed phase screens at equal distance.Compared with the uniform distribution of phase screens position,the residual phase error of the iterative algorithm decreases very significantly.The similarity degree between them is minimal when number of layers is equal to two.
基金sponsored by National Natural Science Foundation of China(No.51071078)Jiangsu Provincial Key Laboratory for International Medical Devices(No.jr1506)the Initial Fund of Jiangsu University Senior Talent(No.15JDG076)
文摘An artificial tribological layer was formed on the worn surface during sliding,through supplying MoS_2,Fe_2O_3 or their equiponderant mixtures onto the sliding interface of H13/GCr15 steels.The effect of this tribological layer on the wear behavior of H13 steel was studied.The worn surfaces and subsurfaces of H13 steel were thoroughly characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS);the wear mechanisms were explored.The research results demonstrated that tribological layer did not exist during sliding of H13 steel with no additive,but it formed with the addition of MoS_2,Fe_2O_3 or their equiponderant mixtures.When there was no tribological layer,the wear rate rapidly increased with an increase of the load.In this case,adhesive and abrasive wear prevailed.As the additives were supplied,the artificial tribological layer was observed to be immediately formed and stably existed on worn surfaces.This tribological layer presented an obvious protective function from wear and friction.Hence,the wear rate and friction coefficient were significantly decreased.MoS_2 as tribological layer seemed to present more obvious protective function than Fe_2O_3.By supplying their mixture,the artificial tribological layer possessed not only the load-carrying capacity of Fe_2O_3,but also the lubricative capacity of MoS_2.These two simultaneous capacities could improve the friction and wear properties of H13 steel further.
基金the New Energy and Industrial Technology Development Organization(NEDO)under the“Innovation Structural Materials Project(Future Pioneering Projects)”JSPS KAKENHI Grant Numbers JP19H00826 and JP18K14027an ISIJ Research Promotion Grant。
文摘Ti-6Al-4V alloy(Ti64)and SUS316 L stainless steel rods were dissimilarly friction welded.Especially focusing on the detailed observation of interface microstructural evolution during the friction welding(FW),the relationship between the processing conditions,weld interface microstructure,and mechanical properties of the obtained joints were systematically investigated to elucidate the principle for obtaining a high joint quality in the FW of Ti64 and SUS316L.A higher friction pressure produced a lower welding temperature in the FW,hence suppressing the thick intermetallic compound layer formation.However,hard and brittle Ti64/SUS316L mechanically mixed layers generally formed especially at the weld interface periphery due to the high temperature increasing rate,high rotation linear velocity and high outward flow velocity of the Ti64.These harmful layers tended to induce the cracks/voids formation at the weld interfaces hence deteriorating the joints’mechanical properties.The rotation speed reduction and liquid CO2 cooling during the entire processing decreased the temperature increasing rate,rotation linear velocity and outward flow velocity of the Ti64 at the weld interface periphery.Therefore,they suppressed the formation of the harmful mechanically mixed layers,facilitated the homogeneous and sound interface microstructure generation,and finally produced a high-quality dissimilar joint in the FW of Ti64 and SUS316L.
基金National Key Research and Development Program(No.2016YFB0701201)National Natural Science Foundation of China(Nos.51671101,51464034)+3 种基金Natural Science foundation of Jiangxi Province(No.20161ACB21003)the Scientific Research Foundation of the Education Department of Jiangxi Province(No.GJJ150010)the financial support provided by the Croucher Foundation(No.9500006)Hong Kong Collaborative Research Fund(CRF)Scheme(No.C4028-14G)
文摘By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.
基金financially supported by the National Natural Science Foundation of China (No. 51071078)the Natural Science Foundation of Jiangsu Province (No. BK2012250)+1 种基金the Research Fund Jiangsu Province Key Laboratory of High-End Structural Materials (No. hsm1303)the Opening Foundation of Jiangsu Province Material Tribology Key Laboratory (No. Kjsmcx201302)。
文摘Dry sliding wear tests were performed for 7075Al alloy under a load of 25–250 N at 25–200℃. The wear behaviors and mechanisms under various testing conditions were explored. A mild-to-severe wear transition is noticed to occur with an increase in the load at 25–200℃. With the temperature increasing, the wear loss decreases constantly under the low load of less than 50 N. It can be suggested that the 7075 Al alloy presents a high wear resistance under a high ambient temperature and low load. Its high wear resistance is found to be attributed to the existence of mechanically mixing layer (MML). The predominant wear mechanism is adhesive and abrasive wear at room temperature. With the ambient temperature and load increasing, oxidative wear and plastic extrusive wear successively prevail due to thermal oxidation and softening of matrix.
基金supported by the National Natural Science Foundation of China(No.51275413)financial support from the China Scholarship Council of China for the first author(No.2010629003)
文摘Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.
基金the support of NSF grant IAA1656075ONR grant N0001417WX00336the U.S.Naval Postgraduate School。
文摘We examine a hierarchy of minimal conceptual models for tropical cyclone intensification.These models are framed mostly in terms of axisymmetric balance dynamics.In the first set of models,the heating rate is prescribed in such a way to mimic a deep overturning circulation with convergence in the lower troposphere and divergence in the upper troposphere,characteristic of a region of deep moist convection.In the second set,the heating rate is related explicitly to the latent heat release of ascending air parcels.The release of latent heat markedly reduces the local static stability of ascending air,raising two possibilities in the balance framework.The first possibility is that the effective static stability and the related discriminant in the Eliassen equation for the overturning circulation in saturated air,although small,remains positive so the Eliassen equation is globally elliptic.The second possibility,the more likely one during vortex intensification,is that the effective static stability in saturated air is negative and the Eliassen equation becomes locally hyperbolic.These models help to understand the differences between the early Ooyama models of 1968 and 1969,the Emanuel,1989 model,and the later Emanuel models of 1995,1997 and 2012.They provide insight also into the popular explanation of the WISHE feedback mechanism for tropical cyclone intensification.Some implications for recent work are discussed.