Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of ...Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of targeted traditional Chinese medicine(TCM)herbs.Methods The Gene Expression Omnibus(GEO)and GeneCards databases were employed to conduct a comprehensive screening of genes and disease-associated loci pertinent to the pathogenesis of OP.The R package was utilized as the analytical tool for the identification of differentially expressed genes.Least absolute shrinkage and selection operator(LASSO)logis-tic regression analysis and support vector machine-recursive feature elimination(SVM-RFE)algorithm were employed in defining the genetic signature specific to OP.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses for the selected pivotal genes were conducted.The cell-type identification by estimating rela-tive subsets of RNA transcripts(CIBERSORT)algorithm was leveraged to examine the infiltra-tion patterns of immune cells;with Spearman’s rank correlation analysis utilized to assess the relationship between the expression levels of the genes and the presence of immune cells.Coremine Medical Database was used to screen out potential TCM herbs for the treatment of OP.Comparative Toxicogenomics Database(CTD)was employed for forecasting the TCM ac-tive ingredients targeting the key genes.AutoDock Vina 1.2.2 and GROMACS 2020 softwares were employed to conclude analysis results;facilitating the exploration of binding affinity and conformational dynamics between the TCM active ingredients and their biological targets.Results Ten genes were identified by intersecting the results from the GEO and GeneCards databases.Through the application of LASSO regression and SVM-RFE algorithm;four piv-otal genes were selected:coat protein(CP);kallikrein 3(KLK3);polymeraseγ(POLG);and transient receptor potential vanilloid 4(TRPV4).GO and KEGG pathway enrichment analy-ses revealed that these trait genes were predominantly engaged in the regulation of defense response activation;maintenance of cellular metal ion balance;and the production of chemokine ligand 5.These genes were notably associated with signaling pathways such as ferroptosis;porphyrin metabolism;and base excision repair.Immune infiltration analysis showed that key genes were highly correlated with immune cells.Macrophage M0;M1;M2;and resting dendritic cell were significantly different between groups;and there were signifi-cant differences between different groups(P<0.05).The interaction counts of resveratrol;curcumin;and quercetin with KLK3 were 7;3;and 2;respectively.It shows that the interac-tions of resveratrol;curcumin;and quercetin with KLK3 were substantial.Molecular docking and molecular dynamics simulations further confirmed the robust binding affinity of these bioactive compounds to the target genes.Conclusion Pivotal genes including CP;KLK3;POLG;and TRPV4;exhibited commendable significant prognostic value;and played a crucial role in the diagnostic assessment of OP.Resveratrol;curcumin;and quercetin;natural compounds found in TCM;showed promise in their potential to effectively modulate the bone-forming gene KLK3.This study provides a sci-entific basis for the interpretation of the pathogenesis of OP and the development of clinical drugs.展开更多
BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is...BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is known about the potential mechanism of surgical treatment for periodontitis. AIM To explore the potential molecular mechanism of surgical treatment for periodontitis. METHODS First, based on the expression profiles of genes related to surgical treatment for periodontitis, a set of expression disorder modules related to surgical treatment for periodontitis were obtained by enrichment analysis. Subsequently, based on crosstalk analysis, we proved that there was a significant crosstalk relationship between module 3 and module 5. Finally, based on predictive analysis of multidimensional regulators, we identified a series of regulatory factors, such as endogenous genes, non-coding RNAs (ncRNAs), and transcription factors, which have potential regulatory effects on periodontitis. RESULTS A total of 337 genes related to surgical treatment for periodontitis were obtained, and 3896 genes related to periodontitis were amplified. Eight expression modules of periodontitis were obtained, involving the aggregation of 2672 gene modules. These modules are mainly involved in G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger, and adenylate cyclasemodulating G-protein coupled receptor signaling pathway. In addition, eight endogenous genes (including EGF, RPS27A, and GNB3) were screened by network connectivity analysis. Finally, based on this set of potential dysfunction modules, 94 transcription factors (including NFKB1, SP1, and STAT3) and 1198 ncRNAs (including MALAT1, CRNDE, and ANCR) were revealed. These core regulators are thought to be involved in the potential molecular mechanism of periodontitis after surgical treatment. CONCLUSION Based on the results of this study, we can show biologists and pharmacists a new idea to reveal the potential molecular mechanism of surgical treatment for periodontitis, and provide valuable reference for follow-up treatment programs.展开更多
The paper takes reversal hexagon connecting bar mechanism which uses in colliery sump cleaner as research object, takes main performance of reversal hexagon connecting bar in loader as target and uses the idea of anti...The paper takes reversal hexagon connecting bar mechanism which uses in colliery sump cleaner as research object, takes main performance of reversal hexagon connecting bar in loader as target and uses the idea of anti request project and modern design, raises a new method of engineering design. It has proved that the method is feasibility and correct by practice.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Method...Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Methodology In this study, a single period of cyclic mechanical stretch (0.5 Hz, 2,000 με) was performed on rat bone marrow MSCs. Cellular proliferation and alkaline phosphatase (ALP) activity was examined. The mRNA expression of six bone-related genes (Ets-1, bFGF, IGF-Ⅱ, TGF-β, Cbfal and ALP) was detected using real-time quantitative RT-PCR. Results The results showed that mechanical strain can promote MSCs proliferation, increase ALP activity, and up-regulate the expression of these genes. A significant increase in Ets-1 expression was detected immediately after mechanical stimulation, but Cbfal expression became elevated later. The temporal expression pattem of ALP coincided perfectly with Cbfal. Conclusion The results of this study suggest that mechanical strain may act as a stimulator to induce differentiation of MSCs into osteoblasts, and that these bone-related genes may play different roles in the response of MSCs to mechanical stimulation.展开更多
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral...Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.展开更多
Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorder...Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorders and growth inhibition.On the other hand,plants have evolved waterlogging-tolerance or adaptive mechanisms,including morphological changes,alternation of respiratory pathways,antioxidant protection and endogenous hormonal regulation.In this review,recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented,and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.We also summarize the identified QTLs and key genes associated with waterlogging tolerance.展开更多
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ...Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.展开更多
The exact mechanisms associated with secondary brain damage following traumatic brain injury(TBI)remain unclear;therefore,identifying the critical molecular mechanisms involved in TBI is essential.The m RNA expression...The exact mechanisms associated with secondary brain damage following traumatic brain injury(TBI)remain unclear;therefore,identifying the critical molecular mechanisms involved in TBI is essential.The m RNA expression microarray GSE2871 was downloaded from the Gene Expression Omnibus(GEO)repository.GSE2871 comprises a total of 31 cerebral cortex samples,including two post-TBI time points.The microarray features eight control and seven TBI samples,from 4 hours post-TBI,and eight control and eight TBI samples from 24 hours post-TBI.In this bioinformatics-based study,109 and 66 differentially expressed genes(DEGs)were identified in a Sprague-Dawley(SD)rat TBI model,4 and 24 hours post-TBI,respectively.Functional enrichment analysis showed that the identified DEGs were significantly enriched in several terms,such as positive regulation of nuclear factor-κB transcription factor activity,mitogen-activated protein kinase signaling pathway,negative regulation of apoptotic process,and tumor necrosis factor signaling pathway.Moreover,the hub genes with high connectivity degrees were primarily related to inflammatory mediators.To validate the top five hub genes,a rat model of TBI was established using the weight-drop method,and real-time quantitative polymerase chain reaction analysis of the cerebral cortex was performed.The results showed that compared with control rats,Tnf-α,c-Myc,Spp1,Cxcl10,Ptprc,Egf,Mmp9,and Lcn2 were upregulated,and Fn1 was downregulated in TBI rats.Among these hub genes,Fn1,c-Myc,and Ptprc may represent novel biomarkers or therapeutic targets for TBI.These identified pathways and key genes may provide insights into the molecular mechanisms of TBI and provide potential treatment targets for patients with TBI.This study was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Nanchang University,China(approval No.003)in January 2016.展开更多
Turbot harbor a relatively remarkable ability to adapt to opposing osmotic challenges and are an excellent model species to study the physiological adaptations of flounder associated with osmoregulatory plasticity.The...Turbot harbor a relatively remarkable ability to adapt to opposing osmotic challenges and are an excellent model species to study the physiological adaptations of flounder associated with osmoregulatory plasticity.The kidney transcriptome of turbot treated 24 h in water of hypo-salinity(salinity 5)and seawater(salinity 30)was sequenced and characterized.In silico analysis indicated that all unigenes had significant hits in seven databases.The functional annotation analysis of the transcriptome showed that the immune system and biological processes associated with digestion,absorption,and metabolism played an important role in the osmoregulation of turbot in response to hypo-salinity.Analysis of biological processes associated with inorganic channels and transporters indicated that mineral absorption and bile secretion contributed to iono-osmoregulation resulting in cell volume regulation and cell phenotypic plasticity.Moreover,we analyzed and predicted the mechanisms of canonical signaling transduction.Biological processes involved in renin secretion,ECM-receptor interaction,adherens junction,and focal adhesion played an important role in the plasticity phenotype in hypo-stress,while the signal transduction network composed of the MAPK signaling pathway and PI3K-Akt signaling pathway with GABAergic synapse,worked in hypoosmoregulation signal transduction in the turbot.In addition,analysis of the tissue specificity of targeted gene expression using qPCR during salinity stress was carried out.The results showed that the kidney,gill,and spleen were vital regulating organs of osmotic pressure,and the osmoregulation pattern of euryhaline fish dif fered among species.展开更多
As typical visual culture symbol of China, the visual image of Sun Wukong firstly appeared on the mural of Yulin Caves of Dunhuang in Western Xia regime and the story of Monk Tang and his prentices on the mural in Yua...As typical visual culture symbol of China, the visual image of Sun Wukong firstly appeared on the mural of Yulin Caves of Dunhuang in Western Xia regime and the story of Monk Tang and his prentices on the mural in Yuan Dynasty. Up to Yuan Dynasty, it became very popular. Since the novel Pilgrimage to the West was published, the visual image of Sun Wukong has appeared in the visual carriers of wood block, colored drawing, paper-cut, traditional Chinese opera, film, television, ad, cartoon and so on. European countries, America, Japan and South Korea use advanced film and TV technology and digital technology to deduce, model, adapt and simulate the visual image of Sun Wukong. This paper investigates the construction of the visual image of Sun Wukong in China and extraterritorial countries and regions, tries to explore Chinese "visual" experience in mediaeval times and especially modern times and seeks a clue for understanding Chinese problem of visual expression.展开更多
Ribosome is one of the most abundant organelles in all living cells and plays a crucial role in cell growth. Synthesis of ribosomal components is tightly related with the change of growth conditions. We have comparati...Ribosome is one of the most abundant organelles in all living cells and plays a crucial role in cell growth. Synthesis of ribosomal components is tightly related with the change of growth conditions. We have comparatively analyzed the 5’ flanking region of ribosomal protein (RP) genes in Arabidopsis and O. sativa. In both Arabidopsis and O. sativa, there are two putative transcriptional factor binding motifs (telo box and site II elements) overrepresented in the proximal promoter region with a strong positional bias in most of the RP genes, which suggests the conserved mechanism of transcription-level control in RP genes of these two organisms. Tri-nucleotide repeats motif CTT and CCG were also common in 5’ flanking region of RP genes in Arabidopsis and O. sativa. However, we only found CCG repeat motif was enriched in O. sativa RP genes and most of them were clustered in the 5’ UTR region. This finding reveals molecular mechanism for divergent regulation of RP genes in Arabidopsis and O. sativa, and gives the possible clue to the mechanism of controlling O. sativa RP genes expression at the translation level.展开更多
By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input ...By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input and output of SGM is established based on systematic design point. Meanwhile, the mathematical expression for SGM is deduced by integrating matrix theory and graph theory; thus, the topological characteristics of the kinematic structure of SGM can be converted into a matrix model, and the topological design problem of SGM into a matrix operation problem. In addition, a brief discussion about the measures for identification of isomorphism of the graph mode is made.展开更多
Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency bi...Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.展开更多
Background:According to the World Health Organization,about 350 million people worldwide are suffering from depression.It's reported that depression has been linked to several circadian rhythm perturbations,sugges...Background:According to the World Health Organization,about 350 million people worldwide are suffering from depression.It's reported that depression has been linked to several circadian rhythm perturbations,suggesting a disruption of the circadian clock system in affective disorders.The present study investigates the possible molecular mechanism of Shimian granules(SMG)in treating depression via restoring disrupted circadian rhythms.Method:Firstly,network pharmacology approach was used to identify the compounds and potential targets of SMG in TCMIP and BATMAN-TCM database.Secondly,the differential expression genes were obtained by gene expression profiling in GEO database(GSE56931,GSE98793).Further,protein-protein interactions(PPI)network was used to screen out core targets by STRING v11.Moreover,functional enrichment was carried out in DAVID database.Conclusively,the"herbs-compounds-targets-pathways"network was established to explore the mechanism of SMG in the treatment of depression.Result:It was found out that 65 compounds,18 targets and three pathways contributed to SMG in treating depression by regulating disrupted circadian rhythms,which might relate to core targets TNF,IL10,VDR in cAMP and calcium signaling pathway.Conclusion:Network pharmacology combined with gene expression profiling exhibited a powerful means to investigate the possible mechanism of formula,which contributes to theoretical basis for further study of SMG in the treatment of depression.展开更多
Brown planthopper(BPH) is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes(PR1a, PR2, PR3, PR4, PR6, PR9, ...Brown planthopper(BPH) is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes(PR1a, PR2, PR3, PR4, PR6, PR9, PR10a, PR13, PR15 and PRpha), signaling molecule synthesis genes(AOS, AXR, ACO and LOX), antioxidant-related genes(CAT, TRX, GST and SOD) and lignin biosynthesis-related genes(CHS, CHI and C4H) were investigated in a resistant rice variety. AOS, PR6,PR9 and PR15 genes showed significantly increased relative expression levels at 24.38-, 19.17-, 14.71-, and 12.74-fold compared to the control. Moderate increased relative expression levels of lignin biosynthesis-related gene(C4H), pathogenesis-related genes(PR4, PR10a and PRpha), and antioxidant-related gene(GST) were found, while CHI, LOX, SOD, TRX1 and AXR showed decreased relative expression levels. It was thus clearly shown that wound-induced response genes were activated in rice plants after BPH attacks through AOS activation. Jasmonic acid signaling molecule may activate PR6, PR15, GST and CAT subsequently increasing their expression for H_2O_2 detoxification. PR6 were expressed at the highest relative level among the PR genes. These genes therefore have also a considerable synergistic role with the other genes against BPH by interfered their digestion tract system.展开更多
The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and l...The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.展开更多
MicroRNAs(miRNAs) can regulate the modulation of the phenotype of Schwann cells. Numerous novel miRNAs have been discovered and identified in rat sciatic nerve segments, including miR-3099. In the current study, miR-3...MicroRNAs(miRNAs) can regulate the modulation of the phenotype of Schwann cells. Numerous novel miRNAs have been discovered and identified in rat sciatic nerve segments, including miR-3099. In the current study, miR-3099 expression levels following peripheral nerve injury were measured in the proximal stumps of rat sciatic nerves after surgical crush. Real-time reverse transcription-polymerase chain reaction was used to determine miR-3099 expression in the crushed nerve segment at 0, 1, 4, 7, and 14 days post sciatic nerve injury, which was consistent with Solexa sequencing outcomes. Expression of miR-3099 was up-regulated following peripheral nerve injury. EdU and transwell chamber assays were used to observe the effect of miR-3099 on Schwann cell proliferation and migration. The results showed that increased miR-3099 expression promoted the proliferation and migration of Schwann cells. However, reduced miR-3099 expression suppressed the proliferation and migration of Schwann cells. The potential target genes of miR-3099 were also investigated by bioinformatic tools and high-throughput outcomes. miR-3099 targets genes Aqp4, St8 sia2, Tnfsf15, and Zbtb16 and affects the proliferation and migration of Schwann cells. This study examined the levels of miR-3099 at different time points following peripheral nerve injury. Our results confirmed that increased miR-3099 level induced by peripheral nerve injury can promote the proliferation and migration of Schwann cells.展开更多
Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-ene...Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-energy N^+ ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers, One such variation was caused by the re-activation of Tyl-copia-like retrotransposons, implying that the mutagenic effects of lowenergy ions might work through elevated activation of retrotransposons, In this paper an expression profile of Tyl-copia-like retrotransposons in wheat treated by low-energy N^+ ions is reported, The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned, 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively, Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample, Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample, This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation, It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells.展开更多
[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-D...[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.展开更多
基金National Natural Science Foundation of China(81960877).
文摘Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of targeted traditional Chinese medicine(TCM)herbs.Methods The Gene Expression Omnibus(GEO)and GeneCards databases were employed to conduct a comprehensive screening of genes and disease-associated loci pertinent to the pathogenesis of OP.The R package was utilized as the analytical tool for the identification of differentially expressed genes.Least absolute shrinkage and selection operator(LASSO)logis-tic regression analysis and support vector machine-recursive feature elimination(SVM-RFE)algorithm were employed in defining the genetic signature specific to OP.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses for the selected pivotal genes were conducted.The cell-type identification by estimating rela-tive subsets of RNA transcripts(CIBERSORT)algorithm was leveraged to examine the infiltra-tion patterns of immune cells;with Spearman’s rank correlation analysis utilized to assess the relationship between the expression levels of the genes and the presence of immune cells.Coremine Medical Database was used to screen out potential TCM herbs for the treatment of OP.Comparative Toxicogenomics Database(CTD)was employed for forecasting the TCM ac-tive ingredients targeting the key genes.AutoDock Vina 1.2.2 and GROMACS 2020 softwares were employed to conclude analysis results;facilitating the exploration of binding affinity and conformational dynamics between the TCM active ingredients and their biological targets.Results Ten genes were identified by intersecting the results from the GEO and GeneCards databases.Through the application of LASSO regression and SVM-RFE algorithm;four piv-otal genes were selected:coat protein(CP);kallikrein 3(KLK3);polymeraseγ(POLG);and transient receptor potential vanilloid 4(TRPV4).GO and KEGG pathway enrichment analy-ses revealed that these trait genes were predominantly engaged in the regulation of defense response activation;maintenance of cellular metal ion balance;and the production of chemokine ligand 5.These genes were notably associated with signaling pathways such as ferroptosis;porphyrin metabolism;and base excision repair.Immune infiltration analysis showed that key genes were highly correlated with immune cells.Macrophage M0;M1;M2;and resting dendritic cell were significantly different between groups;and there were signifi-cant differences between different groups(P<0.05).The interaction counts of resveratrol;curcumin;and quercetin with KLK3 were 7;3;and 2;respectively.It shows that the interac-tions of resveratrol;curcumin;and quercetin with KLK3 were substantial.Molecular docking and molecular dynamics simulations further confirmed the robust binding affinity of these bioactive compounds to the target genes.Conclusion Pivotal genes including CP;KLK3;POLG;and TRPV4;exhibited commendable significant prognostic value;and played a crucial role in the diagnostic assessment of OP.Resveratrol;curcumin;and quercetin;natural compounds found in TCM;showed promise in their potential to effectively modulate the bone-forming gene KLK3.This study provides a sci-entific basis for the interpretation of the pathogenesis of OP and the development of clinical drugs.
文摘BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is known about the potential mechanism of surgical treatment for periodontitis. AIM To explore the potential molecular mechanism of surgical treatment for periodontitis. METHODS First, based on the expression profiles of genes related to surgical treatment for periodontitis, a set of expression disorder modules related to surgical treatment for periodontitis were obtained by enrichment analysis. Subsequently, based on crosstalk analysis, we proved that there was a significant crosstalk relationship between module 3 and module 5. Finally, based on predictive analysis of multidimensional regulators, we identified a series of regulatory factors, such as endogenous genes, non-coding RNAs (ncRNAs), and transcription factors, which have potential regulatory effects on periodontitis. RESULTS A total of 337 genes related to surgical treatment for periodontitis were obtained, and 3896 genes related to periodontitis were amplified. Eight expression modules of periodontitis were obtained, involving the aggregation of 2672 gene modules. These modules are mainly involved in G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger, and adenylate cyclasemodulating G-protein coupled receptor signaling pathway. In addition, eight endogenous genes (including EGF, RPS27A, and GNB3) were screened by network connectivity analysis. Finally, based on this set of potential dysfunction modules, 94 transcription factors (including NFKB1, SP1, and STAT3) and 1198 ncRNAs (including MALAT1, CRNDE, and ANCR) were revealed. These core regulators are thought to be involved in the potential molecular mechanism of periodontitis after surgical treatment. CONCLUSION Based on the results of this study, we can show biologists and pharmacists a new idea to reveal the potential molecular mechanism of surgical treatment for periodontitis, and provide valuable reference for follow-up treatment programs.
文摘The paper takes reversal hexagon connecting bar mechanism which uses in colliery sump cleaner as research object, takes main performance of reversal hexagon connecting bar in loader as target and uses the idea of anti request project and modern design, raises a new method of engineering design. It has proved that the method is feasibility and correct by practice.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金supported by grants from the National Nature Science Foundation of China (No. 30772454)Science and Technology Bureau of Sichuan Province (No. 2006z09-013)
文摘Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Methodology In this study, a single period of cyclic mechanical stretch (0.5 Hz, 2,000 με) was performed on rat bone marrow MSCs. Cellular proliferation and alkaline phosphatase (ALP) activity was examined. The mRNA expression of six bone-related genes (Ets-1, bFGF, IGF-Ⅱ, TGF-β, Cbfal and ALP) was detected using real-time quantitative RT-PCR. Results The results showed that mechanical strain can promote MSCs proliferation, increase ALP activity, and up-regulate the expression of these genes. A significant increase in Ets-1 expression was detected immediately after mechanical stimulation, but Cbfal expression became elevated later. The temporal expression pattem of ALP coincided perfectly with Cbfal. Conclusion The results of this study suggest that mechanical strain may act as a stimulator to induce differentiation of MSCs into osteoblasts, and that these bone-related genes may play different roles in the response of MSCs to mechanical stimulation.
基金supported by Nanjing Medical University Technology Development Fund of China(General Program),No.2013NJMU182
文摘Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
基金supported by the Key Research Projects of Zhejiang Province,China(2021C02064-3 and 2021C02057)the China Agriculture Research System(CARS-05)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Waterlogging is one of the major abiotic stresses threatening crop yields globally.Under waterlogging stress,plants suffer from oxidative stress,heavy metal toxicity and energy deficiency,leading to metabolic disorders and growth inhibition.On the other hand,plants have evolved waterlogging-tolerance or adaptive mechanisms,including morphological changes,alternation of respiratory pathways,antioxidant protection and endogenous hormonal regulation.In this review,recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented,and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.We also summarize the identified QTLs and key genes associated with waterlogging tolerance.
基金the National Key Research and Development Program of the Ministry of Science and Technology(CN)(No.2022YFD2400401)the Key Research and Development Plan of Shandong Province(CN)(for Academician Team in Shandong)(No.2023ZLYS02)+1 种基金the Fundamental Research Funds for the Central Universities(No.202261029)the Enterprise Authorized Project(No.20200025)。
文摘Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.
基金supported by the National Natural Science Foundation of China,Nos.81860409(to ZF),81660382(to ZF)Graduate Students Innovation Fund Project in Jiangxi Province of China,No.YC2019-B036(to YLT)。
文摘The exact mechanisms associated with secondary brain damage following traumatic brain injury(TBI)remain unclear;therefore,identifying the critical molecular mechanisms involved in TBI is essential.The m RNA expression microarray GSE2871 was downloaded from the Gene Expression Omnibus(GEO)repository.GSE2871 comprises a total of 31 cerebral cortex samples,including two post-TBI time points.The microarray features eight control and seven TBI samples,from 4 hours post-TBI,and eight control and eight TBI samples from 24 hours post-TBI.In this bioinformatics-based study,109 and 66 differentially expressed genes(DEGs)were identified in a Sprague-Dawley(SD)rat TBI model,4 and 24 hours post-TBI,respectively.Functional enrichment analysis showed that the identified DEGs were significantly enriched in several terms,such as positive regulation of nuclear factor-κB transcription factor activity,mitogen-activated protein kinase signaling pathway,negative regulation of apoptotic process,and tumor necrosis factor signaling pathway.Moreover,the hub genes with high connectivity degrees were primarily related to inflammatory mediators.To validate the top five hub genes,a rat model of TBI was established using the weight-drop method,and real-time quantitative polymerase chain reaction analysis of the cerebral cortex was performed.The results showed that compared with control rats,Tnf-α,c-Myc,Spp1,Cxcl10,Ptprc,Egf,Mmp9,and Lcn2 were upregulated,and Fn1 was downregulated in TBI rats.Among these hub genes,Fn1,c-Myc,and Ptprc may represent novel biomarkers or therapeutic targets for TBI.These identified pathways and key genes may provide insights into the molecular mechanisms of TBI and provide potential treatment targets for patients with TBI.This study was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Nanchang University,China(approval No.003)in January 2016.
基金Supported by the Earmarked Fund for Modern Agro-Industry Technology Research System(No.CARS-47-G01)the Ao Shan Talents Cultivation Program supported by Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-OS04)+3 种基金the National Natural Science Foundation of China(No.41706168)the Agricultural Fine Breed Project of Shandong(No.2019LZGC013)the Basal Research Fund,Chinese Academy of Fishery Sciences(No.2016HY-JC0301)the Yantai Science and Technology Project(No.2018ZDCX021)
文摘Turbot harbor a relatively remarkable ability to adapt to opposing osmotic challenges and are an excellent model species to study the physiological adaptations of flounder associated with osmoregulatory plasticity.The kidney transcriptome of turbot treated 24 h in water of hypo-salinity(salinity 5)and seawater(salinity 30)was sequenced and characterized.In silico analysis indicated that all unigenes had significant hits in seven databases.The functional annotation analysis of the transcriptome showed that the immune system and biological processes associated with digestion,absorption,and metabolism played an important role in the osmoregulation of turbot in response to hypo-salinity.Analysis of biological processes associated with inorganic channels and transporters indicated that mineral absorption and bile secretion contributed to iono-osmoregulation resulting in cell volume regulation and cell phenotypic plasticity.Moreover,we analyzed and predicted the mechanisms of canonical signaling transduction.Biological processes involved in renin secretion,ECM-receptor interaction,adherens junction,and focal adhesion played an important role in the plasticity phenotype in hypo-stress,while the signal transduction network composed of the MAPK signaling pathway and PI3K-Akt signaling pathway with GABAergic synapse,worked in hypoosmoregulation signal transduction in the turbot.In addition,analysis of the tissue specificity of targeted gene expression using qPCR during salinity stress was carried out.The results showed that the kidney,gill,and spleen were vital regulating organs of osmotic pressure,and the osmoregulation pattern of euryhaline fish dif fered among species.
基金Acknowledgements: This paper was sponsored by China National Social Science Foundation "Research on the Fundamental Problems of the Contemporary Aesthetics and Criticism Patterns" (15ZDB023).
文摘As typical visual culture symbol of China, the visual image of Sun Wukong firstly appeared on the mural of Yulin Caves of Dunhuang in Western Xia regime and the story of Monk Tang and his prentices on the mural in Yuan Dynasty. Up to Yuan Dynasty, it became very popular. Since the novel Pilgrimage to the West was published, the visual image of Sun Wukong has appeared in the visual carriers of wood block, colored drawing, paper-cut, traditional Chinese opera, film, television, ad, cartoon and so on. European countries, America, Japan and South Korea use advanced film and TV technology and digital technology to deduce, model, adapt and simulate the visual image of Sun Wukong. This paper investigates the construction of the visual image of Sun Wukong in China and extraterritorial countries and regions, tries to explore Chinese "visual" experience in mediaeval times and especially modern times and seeks a clue for understanding Chinese problem of visual expression.
文摘Ribosome is one of the most abundant organelles in all living cells and plays a crucial role in cell growth. Synthesis of ribosomal components is tightly related with the change of growth conditions. We have comparatively analyzed the 5’ flanking region of ribosomal protein (RP) genes in Arabidopsis and O. sativa. In both Arabidopsis and O. sativa, there are two putative transcriptional factor binding motifs (telo box and site II elements) overrepresented in the proximal promoter region with a strong positional bias in most of the RP genes, which suggests the conserved mechanism of transcription-level control in RP genes of these two organisms. Tri-nucleotide repeats motif CTT and CCG were also common in 5’ flanking region of RP genes in Arabidopsis and O. sativa. However, we only found CCG repeat motif was enriched in O. sativa RP genes and most of them were clustered in the 5’ UTR region. This finding reveals molecular mechanism for divergent regulation of RP genes in Arabidopsis and O. sativa, and gives the possible clue to the mechanism of controlling O. sativa RP genes expression at the translation level.
文摘By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input and output of SGM is established based on systematic design point. Meanwhile, the mathematical expression for SGM is deduced by integrating matrix theory and graph theory; thus, the topological characteristics of the kinematic structure of SGM can be converted into a matrix model, and the topological design problem of SGM into a matrix operation problem. In addition, a brief discussion about the measures for identification of isomorphism of the graph mode is made.
基金Supported by The grant from the National Institutes of Health,Martin Delaney Collaboratory of AIDS Researchers for Eradication(CARE,U19 AI 096113)the Swiss National Science Foundation(grant 31003A_146579)the University of California,San Diego Fellowships for Graduate Researchers,Frontiers of Innovation Scholars Program
文摘Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.
基金This research has been financially supported by the Special Support Scheme for Shaanxi Province,and the Subject Innovation Team of Shaanxi University of Chinese Medicine(#2019-YS01)Shaanxi province administration of traditional Chinese medicine(#2021-ZZ-JC018).
文摘Background:According to the World Health Organization,about 350 million people worldwide are suffering from depression.It's reported that depression has been linked to several circadian rhythm perturbations,suggesting a disruption of the circadian clock system in affective disorders.The present study investigates the possible molecular mechanism of Shimian granules(SMG)in treating depression via restoring disrupted circadian rhythms.Method:Firstly,network pharmacology approach was used to identify the compounds and potential targets of SMG in TCMIP and BATMAN-TCM database.Secondly,the differential expression genes were obtained by gene expression profiling in GEO database(GSE56931,GSE98793).Further,protein-protein interactions(PPI)network was used to screen out core targets by STRING v11.Moreover,functional enrichment was carried out in DAVID database.Conclusively,the"herbs-compounds-targets-pathways"network was established to explore the mechanism of SMG in the treatment of depression.Result:It was found out that 65 compounds,18 targets and three pathways contributed to SMG in treating depression by regulating disrupted circadian rhythms,which might relate to core targets TNF,IL10,VDR in cAMP and calcium signaling pathway.Conclusion:Network pharmacology combined with gene expression profiling exhibited a powerful means to investigate the possible mechanism of formula,which contributes to theoretical basis for further study of SMG in the treatment of depression.
基金supported by the National Research Council of Thailand and Naresuan University, Thailand (contact code R2558B020)
文摘Brown planthopper(BPH) is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes(PR1a, PR2, PR3, PR4, PR6, PR9, PR10a, PR13, PR15 and PRpha), signaling molecule synthesis genes(AOS, AXR, ACO and LOX), antioxidant-related genes(CAT, TRX, GST and SOD) and lignin biosynthesis-related genes(CHS, CHI and C4H) were investigated in a resistant rice variety. AOS, PR6,PR9 and PR15 genes showed significantly increased relative expression levels at 24.38-, 19.17-, 14.71-, and 12.74-fold compared to the control. Moderate increased relative expression levels of lignin biosynthesis-related gene(C4H), pathogenesis-related genes(PR4, PR10a and PRpha), and antioxidant-related gene(GST) were found, while CHI, LOX, SOD, TRX1 and AXR showed decreased relative expression levels. It was thus clearly shown that wound-induced response genes were activated in rice plants after BPH attacks through AOS activation. Jasmonic acid signaling molecule may activate PR6, PR15, GST and CAT subsequently increasing their expression for H_2O_2 detoxification. PR6 were expressed at the highest relative level among the PR genes. These genes therefore have also a considerable synergistic role with the other genes against BPH by interfered their digestion tract system.
基金supported by the National Basic Research Program of China (973 Program, 2004CB117306).
文摘The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX17-1910(to QYL)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(PAPD)
文摘MicroRNAs(miRNAs) can regulate the modulation of the phenotype of Schwann cells. Numerous novel miRNAs have been discovered and identified in rat sciatic nerve segments, including miR-3099. In the current study, miR-3099 expression levels following peripheral nerve injury were measured in the proximal stumps of rat sciatic nerves after surgical crush. Real-time reverse transcription-polymerase chain reaction was used to determine miR-3099 expression in the crushed nerve segment at 0, 1, 4, 7, and 14 days post sciatic nerve injury, which was consistent with Solexa sequencing outcomes. Expression of miR-3099 was up-regulated following peripheral nerve injury. EdU and transwell chamber assays were used to observe the effect of miR-3099 on Schwann cell proliferation and migration. The results showed that increased miR-3099 expression promoted the proliferation and migration of Schwann cells. However, reduced miR-3099 expression suppressed the proliferation and migration of Schwann cells. The potential target genes of miR-3099 were also investigated by bioinformatic tools and high-throughput outcomes. miR-3099 targets genes Aqp4, St8 sia2, Tnfsf15, and Zbtb16 and affects the proliferation and migration of Schwann cells. This study examined the levels of miR-3099 at different time points following peripheral nerve injury. Our results confirmed that increased miR-3099 level induced by peripheral nerve injury can promote the proliferation and migration of Schwann cells.
基金supported by National Natural Science Foundation of China (No.10505018)Natural Science Foundation of Henan Province (No.511030400)
文摘Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-energy N^+ ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers, One such variation was caused by the re-activation of Tyl-copia-like retrotransposons, implying that the mutagenic effects of lowenergy ions might work through elevated activation of retrotransposons, In this paper an expression profile of Tyl-copia-like retrotransposons in wheat treated by low-energy N^+ ions is reported, The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned, 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively, Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample, Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample, This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation, It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells.
文摘[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.