The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthe...The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.展开更多
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma...This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.展开更多
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical...To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur...The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.展开更多
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e...Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.展开更多
The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated.These dislocations create stress fields within the material depending on their intrinsic character.Generally,...The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated.These dislocations create stress fields within the material depending on their intrinsic character.Generally,the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature:fine-grain strengthening,precipitate strengthening and solid solution strengthening as well as texture strengthening.The indirect-extruded Mg-8Sn(T8)and Mg-8Sn-1Al-1Zn(TAZ811)alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition.The contributions to the strengthen of Mg-Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics,physical characteristics,thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.展开更多
Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-t...Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP(Compact Strip Production) technique was investigated. The value of each strengthening mechanism andits contribution percentage to yield strength were achieved. The results show that refinementstrengthening is the predominant strengthening mode; precipitation strengthening and dislocationstrengthening are second to it, their contributions to yield strength are almost equal.展开更多
Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied usin...Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.展开更多
The microstructure and strengthening mechanisms of as-cast Mg-6Al-6Nd alloy were studied. The results show that the addition of 6 wt.% Nd into Mg-6Al alloy leads to the precipitation of Al11Nd3 and Al2Nd phases and de...The microstructure and strengthening mechanisms of as-cast Mg-6Al-6Nd alloy were studied. The results show that the addition of 6 wt.% Nd into Mg-6Al alloy leads to the precipitation of Al11Nd3 and Al2Nd phases and decrease in the content of Al solid soluted in Mg-Al matrix. The volume fractions of Al11Nd3 and Al2Nd phases are 3.64% and 0.34%, respectively. Compared with Mg-6Al alloy, the ultimate strength, yielding strength, and elongation of Mg-6Al-6Nd alloy at room temperature and 175℃ are enhanced in some degrees. The strengthening mechanisms of Mg-6Al-6Nd alloy are mainly composed of solid solution strengthening of Al solid soluted in Mg-Al matrix and grain refmement strengthening, dispersion strengthening, and composite strengthening brought by the precipitation of Al11Nd3 phase. The composite strengthening includes the load transfer from the matrix to Al11Nd3 phase and the enhancement of dislocation density due to the geometrical mismatch and thermal mismatch between the matrix and Al11Nd3 phase.展开更多
The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNT...The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNTs@SiCp hybrid reinforcements were synthesized by CVD.Thus,CNTs were well pre-dispersed on the SiCp surfaces before they were added to Mg melt.Therefore,the following semisolid stirring and ultrasonic vibration dispersed the new hybrid reinforcements well in Mg-6Zn melt.The hybrid composite exhibits some unique features in microstructures.Although the distribution of SiCp was very uniform in the Mg-6Zn matrix,most CNTs distributed along the strips in the state of micro-clusters,in which CNTs were bonded very well with Mg matrix.Most of the CNTs kept their structure integrity during fabrication process.All these factors ensure that the hybrid composite have much higher strength and elongation than the mono SiC/Mg-6Zn composites.The dominant strengthening mechanism is the load transfer effect of CNTs.Apart from grain refinement,the CNTs toughen the composites by impeding the microcrack propagation inside the material.Thus,the hybrid CNTs@SiCp successfully realizes the reinforcing advantage of“1+1>2”.展开更多
How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion stre...How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature,with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y_(2)O_(3)alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y_(2)O_(3)alloy with 15.5 nm Y_(2)O_(3)particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650℃ presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy.展开更多
The influence of heat treatment and of thermomechanical processing on the structure and properties of a range of TiAl based alloys has been assessed and in agreement with other reports it has been found that increased...The influence of heat treatment and of thermomechanical processing on the structure and properties of a range of TiAl based alloys has been assessed and in agreement with other reports it has been found that increased refinement of the microstructure leads to improved mechanical strength at room temperature, both for the lamellar and the duplex structures. In the case of alloys cooled rapidly from the alpha phase field the increased refinement in lamellar spacing leads to significant increases in room temperature strength but thermomechanical processing can lead to far greater increases. The origin of this increase in strength in samples with a lamellar structure has been assessed in terms of the ability of dislocations to cross gamma/gamma and gamma/alpha 2 lamellar interfaces. It was concluded that the alpha 2 gamma interfaces and the alpha itself are important factors in strengthening the lamellar alloys. The stability of the various structures developed either by appropriate heat treatments or by thermomechanical processing has been investigated by exposing samples for a range of times at temperatures between 700 and 1 000 ℃. It has been found that the yield strength and the ultimate tensile strength generally decreased by about 20% during high temperature exposure at 700 ℃ for 3 000 h. The detailed behaviour on exposure at 700 ℃ has been found to be a function of alloy composition, with complex precipitates being formed in some alloys, but in all cases the amount of alpha 2 decreased with increased heat treatment time. It has been found that during exposure the alpha 2 lamellae decomposed to gamma phase by a mechanism that can involve the formation of thin gamma lamellae within the original alpha 2 lamellae.展开更多
The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersiv...The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersive spectroscopy(EDS),the microstructure evolution was studied and the strengthening and toughening mechanism was thereby proposed.The results indicate that discontinuous and continuous dynamic recrystallization occurred during the hot rolling deformation of the spray-formed5A12Al alloy.The grain size was significantly refined and the micro-scale grains formed.Partial dynamic recrystallization leads to a significant increase of dislocation density and cellular structure.The Mg atoms were distributed in the Al matrix mainly in the presence of solid solution rather than the formation of precipitate.High solid solution of Mg atoms not only hindered the dislocation motion and increased the density of dislocation,but also exhibited a remarkable solid solution strengthening effect,which contributes to the high strength and high toughness of the as-rolled sheets.The tensile strength and elongation of spray formed5A12Al alloy at room temperature after3passes hot rolling were622MPa and20%,respectively.展开更多
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively...This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.展开更多
Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of ...Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of the composite coatings were determined, and strengthening mechanism of the composite coatings was discussed. Results show that the composite coatings have superior properties to the Ni metal coating. Compared with properties of brush plated Ni metal coating, the composite coatings have hardness over 1.5 times and wear resistance capability of about 2.5 times. The strengthening mechanism of the composite coatings mainly includes fine-crystal grain effect, nanoparticle dispersion effect and dislocation effect.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
Magnesium(Mg)alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility.However,they suffer from low corrosion resistance and antibacterial activity.In thi...Magnesium(Mg)alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility.However,they suffer from low corrosion resistance and antibacterial activity.In this research,semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium(MgO@GNS/Mg)composite to improve mechanical,corrosion and cytocompatibility characteristics.Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength.In vitro,osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization.The presence of MgO@GNS nanoparticles in the composites decreased the opening defects,micro-cracks and micro-pores of the composites thus preventing the penetration of the corrosive solution into the matrix.Studies demonstrated that the MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer.Therefore,the MgO@GNS/Mg composite with high mechanical strength,antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications.展开更多
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(...The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.展开更多
基金supported by the Natural Science Foundation of Hunan Province, China (No. 2023JJ30678)。
文摘The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.
基金funded by Qin Chuang Yuan Talent Project in Shaanxi Province,China(QCYRCXM-2022-274).
文摘This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials.
基金supported by the National Key R&D Program of China(No.2022YFB3705402)。
文摘To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project(51021063)supported by the Creative Research Group of the National Natural Science Foundation of ChinaProject(50831007)supported by the National Natural Science Foundation of China+1 种基金Project(2011CB610401)supported by the National Basic Research Program of ChinaProject(12C1142)supported by the Education Department of Hunan Province,China
文摘The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
基金supported by National Natural Science Foundation of China(No.51971101)Science and Technology Development Program of Jilin Province,China(20230201146G X)Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(asclzytsxm-202015)。
文摘Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
基金This work was supported by National Natural Science Foundation of China(Grant nos.51404166 and 51201112),Shanxi Province Science Foundation for Youths(2013021013-4)Research Project Supported by Shanxi Scholarship Council of China(2014-023)+1 种基金Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant nos.2014120)the Advanced Programs of Department of Human Resources and Social Security of Shanxi Province for Returned Scholars(2013068).
文摘The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated.These dislocations create stress fields within the material depending on their intrinsic character.Generally,the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature:fine-grain strengthening,precipitate strengthening and solid solution strengthening as well as texture strengthening.The indirect-extruded Mg-8Sn(T8)and Mg-8Sn-1Al-1Zn(TAZ811)alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition.The contributions to the strengthen of Mg-Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics,physical characteristics,thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.
基金This work was financially supported by the state foundation for key projects: Fundamental Research on New Generation of Steels (No: G1998061500).
文摘Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP(Compact Strip Production) technique was investigated. The value of each strengthening mechanism andits contribution percentage to yield strength were achieved. The results show that refinementstrengthening is the predominant strengthening mode; precipitation strengthening and dislocationstrengthening are second to it, their contributions to yield strength are almost equal.
基金Projects(51675092,51775099)supported by the National Natural Science Foundation of ChinaProjects(E2018501030,E2018501033,E2018501032)supported by the Natural Science Foundation of Hebei Province,China.
文摘Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.
基金supported by the Major State Basic Research Development Program of China (No.2007CB613706)the Project of Key Disciplines Development "Resources, Environment and Recycling Economy" Interdisciplinary under the Jurisdiction of Beijing Municipality (No.0330005412901)the Project Sponsored by the Scientific Research Foundation for Doctoral Teachers, Beijing University of Technology (No.X0104001200905)
文摘The microstructure and strengthening mechanisms of as-cast Mg-6Al-6Nd alloy were studied. The results show that the addition of 6 wt.% Nd into Mg-6Al alloy leads to the precipitation of Al11Nd3 and Al2Nd phases and decrease in the content of Al solid soluted in Mg-Al matrix. The volume fractions of Al11Nd3 and Al2Nd phases are 3.64% and 0.34%, respectively. Compared with Mg-6Al alloy, the ultimate strength, yielding strength, and elongation of Mg-6Al-6Nd alloy at room temperature and 175℃ are enhanced in some degrees. The strengthening mechanisms of Mg-6Al-6Nd alloy are mainly composed of solid solution strengthening of Al solid soluted in Mg-Al matrix and grain refmement strengthening, dispersion strengthening, and composite strengthening brought by the precipitation of Al11Nd3 phase. The composite strengthening includes the load transfer from the matrix to Al11Nd3 phase and the enhancement of dislocation density due to the geometrical mismatch and thermal mismatch between the matrix and Al11Nd3 phase.
基金This work was supported by“National Natural Science Foundation of China”(Grant Nos.51871074,51971078 and 51671066)“The Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology”(Grant No.201911).
文摘The hybrid addition of CNTs was used to improve both the strengths and ductility of SiCp reinforced Mg matrix composites.A novel method was developed to simultaneously disperse SiCp and CNTs in Mg melt.Firstly,new CNTs@SiCp hybrid reinforcements were synthesized by CVD.Thus,CNTs were well pre-dispersed on the SiCp surfaces before they were added to Mg melt.Therefore,the following semisolid stirring and ultrasonic vibration dispersed the new hybrid reinforcements well in Mg-6Zn melt.The hybrid composite exhibits some unique features in microstructures.Although the distribution of SiCp was very uniform in the Mg-6Zn matrix,most CNTs distributed along the strips in the state of micro-clusters,in which CNTs were bonded very well with Mg matrix.Most of the CNTs kept their structure integrity during fabrication process.All these factors ensure that the hybrid composite have much higher strength and elongation than the mono SiC/Mg-6Zn composites.The dominant strengthening mechanism is the load transfer effect of CNTs.Apart from grain refinement,the CNTs toughen the composites by impeding the microcrack propagation inside the material.Thus,the hybrid CNTs@SiCp successfully realizes the reinforcing advantage of“1+1>2”.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation,China (No.2021A1515110202)the Natural Science Foundation Program of Beijing,China (Nos.2224104,2202031,2174079+6 种基金2162027)the National Natural Science Foundation Program of China (Nos.52131307,52130407,52071013,52104359,51774035,and 52174344)the Scientific and Technological Innovation Foundation of Foshan,China (No.BK21BE007)the National Key Research and Development Program of China (Nos.2021YFB3701900,2022YFB3705400,and 2022YFB3708800)the Beijing Municipal Science & Technology Commission,Administrative Commission of Zhongguancun Science Park,China (No.Z221100005822001)the S&T Program of Hebei,China(No.20311001D)the Fundamental Research Funds for the Central Universities (Nos.FRF-IDRY-20-022,FRF-TP-20-032A2,FRF-TP-20-100A1Z,and FRF-IDRY-22-030)。
文摘How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature,with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y_(2)O_(3)alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y_(2)O_(3)alloy with 15.5 nm Y_(2)O_(3)particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650℃ presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy.
文摘The influence of heat treatment and of thermomechanical processing on the structure and properties of a range of TiAl based alloys has been assessed and in agreement with other reports it has been found that increased refinement of the microstructure leads to improved mechanical strength at room temperature, both for the lamellar and the duplex structures. In the case of alloys cooled rapidly from the alpha phase field the increased refinement in lamellar spacing leads to significant increases in room temperature strength but thermomechanical processing can lead to far greater increases. The origin of this increase in strength in samples with a lamellar structure has been assessed in terms of the ability of dislocations to cross gamma/gamma and gamma/alpha 2 lamellar interfaces. It was concluded that the alpha 2 gamma interfaces and the alpha itself are important factors in strengthening the lamellar alloys. The stability of the various structures developed either by appropriate heat treatments or by thermomechanical processing has been investigated by exposing samples for a range of times at temperatures between 700 and 1 000 ℃. It has been found that the yield strength and the ultimate tensile strength generally decreased by about 20% during high temperature exposure at 700 ℃ for 3 000 h. The detailed behaviour on exposure at 700 ℃ has been found to be a function of alloy composition, with complex precipitates being formed in some alloys, but in all cases the amount of alpha 2 decreased with increased heat treatment time. It has been found that during exposure the alpha 2 lamellae decomposed to gamma phase by a mechanism that can involve the formation of thin gamma lamellae within the original alpha 2 lamellae.
基金Project(2017JJ2073) supported by the Natural Science Foundation of Hunan Province,ChinaProject(15B063) supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersive spectroscopy(EDS),the microstructure evolution was studied and the strengthening and toughening mechanism was thereby proposed.The results indicate that discontinuous and continuous dynamic recrystallization occurred during the hot rolling deformation of the spray-formed5A12Al alloy.The grain size was significantly refined and the micro-scale grains formed.Partial dynamic recrystallization leads to a significant increase of dislocation density and cellular structure.The Mg atoms were distributed in the Al matrix mainly in the presence of solid solution rather than the formation of precipitate.High solid solution of Mg atoms not only hindered the dislocation motion and increased the density of dislocation,but also exhibited a remarkable solid solution strengthening effect,which contributes to the high strength and high toughness of the as-rolled sheets.The tensile strength and elongation of spray formed5A12Al alloy at room temperature after3passes hot rolling were622MPa and20%,respectively.
基金the National Key Research and Development Program of China(No.2016YFB 0300600)the National Natural Science Foundation of China(NSFC)(No.51922026)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.N2002013,N2002005,N2007011)the 111 Project(No.B20029).
文摘This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.
基金Project(G199906509) supported by the National Basic Research Program of China Project(2002M3) supported by China/UK Collaboration Subject Project(50235030) supported by the National Natural Science Foundation of China
文摘Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of the composite coatings were determined, and strengthening mechanism of the composite coatings was discussed. Results show that the composite coatings have superior properties to the Ni metal coating. Compared with properties of brush plated Ni metal coating, the composite coatings have hardness over 1.5 times and wear resistance capability of about 2.5 times. The strengthening mechanism of the composite coatings mainly includes fine-crystal grain effect, nanoparticle dispersion effect and dislocation effect.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
文摘Magnesium(Mg)alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility.However,they suffer from low corrosion resistance and antibacterial activity.In this research,semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium(MgO@GNS/Mg)composite to improve mechanical,corrosion and cytocompatibility characteristics.Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength.In vitro,osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization.The presence of MgO@GNS nanoparticles in the composites decreased the opening defects,micro-cracks and micro-pores of the composites thus preventing the penetration of the corrosive solution into the matrix.Studies demonstrated that the MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer.Therefore,the MgO@GNS/Mg composite with high mechanical strength,antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications.
基金Projects(52001083,52171111,U2141207)supported by the National Natural Science Foundation of ChinaProject(LH2020E060)supported by the Natural Science Foundation of Heilongjiang,China。
文摘The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.