ObjectiveThis study aims to characterize the occurrences and interior structural features of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin of Southwestern China, and to shed light on th...ObjectiveThis study aims to characterize the occurrences and interior structural features of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin of Southwestern China, and to shed light on their formation mechanism.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in a...The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.展开更多
The geometric structure, mechanism of detonation initiation and stability of transition metal carbohydrazide (CHZ) nitrates are investigated via density functional theory. The obtained results show that the Heyd-Scu...The geometric structure, mechanism of detonation initiation and stability of transition metal carbohydrazide (CHZ) nitrates are investigated via density functional theory. The obtained results show that the Heyd-Scuseria-Ernzerhof (HSE) functional yields the most accurate geometry. The initiating reaction of detonation in [Mn(CHZ)3](NO3)2 and [Zn(CHZ)3](NO3)2 is the formation of NO3 radicals. The calculated heat of formation and energy gap predict that the Mn and Zn complexes, which have the half-filled (3d5) and full-filled (3d10) electron configurations for the transition metal ions, respectively are more stable than the Co, Ni and Cu complexes. This indicates that the electron configuration of transition metal ion plays an important role in the stabilities of these energetic complexes.展开更多
The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has ...The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has evolved barrier systems to protect CNS tissue from the external environment. This barrier is a membrane composed of tightly apposed cells and is selectively permeable to specific molecules by way of membrane transporters.展开更多
The main features of morphological model of industrial robots are discussed, such as support system, manipulator and gripping device. These features are presented with the alternatives for their realization as separat...The main features of morphological model of industrial robots are discussed, such as support system, manipulator and gripping device. These features are presented with the alternatives for their realization as separate modules. The examples of synthesis of arrangements of industrial robots are resulted on module principle with writing of their morphological formulas.展开更多
This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of ...This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.展开更多
As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexteri...As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexterity demands.The hyper-redundant bionic robots can complete complex tasks in the unstructured environments by simulating the motion characteristics of the elephant’s trunk and octopus tentacles.Compared with traditional robots,the hyper-redundant bionic robots can accomplish complex tasks because of their flexible structure.A hyper-redundant elephant’s trunk robot(HRETR)with an open structure is developed in this paper.The content includes mechanical structure design,kinematic analysis,virtual prototype simulation,control system design,and prototype building.This design is inspired by the flexible motion of an elephant’s trunk,which is expansible and is composed of six unit modules,namely,3UPS-PS parallel in series.First,the mechanical design of the HRETR is completed according to the motion characteristics of an elephant’s trunk and based on the principle of mechanical bionic design.After that,the backbone mode method is used to establish the kinematic model of the robot.The simulation software SolidWorks and ADAMS are combined to analyze the kinematic characteristics when the trajectory of the end moving platform of the robot is assigned.With the help of ANSYS,the static stiffness of each component and the whole robot is analyzed.On this basis,the materials of the weak parts of the mechanical structure and the hardware are selected reasonably.Next,the extensible structures of software and hardware control system are constructed according to the modular and hierarchical design criteria.Finally,the prototype is built and its performance is tested.The proposed research provides a method for the design and development for the hyper-redundant bionic robot.展开更多
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially ...Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (...We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.展开更多
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ...In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.展开更多
Density functional theory (DFT) calculations, at the B3LYP/6-311G** level of theory, were performed to study the reaction mechanism and potenti4the potential energy surface of the studied reactions was investigate...Density functional theory (DFT) calculations, at the B3LYP/6-311G** level of theory, were performed to study the reaction mechanism and potenti4the potential energy surface of the studied reactions was investigated. Our calculation results show that [2 + 2] and [4 + 4] reactions are concerted and synchronous processes; while [4 + 2] reactions proceed via a concerted but asynchronous way in general. [2 + 2] and [4 + 2] reactions of germabenzenes and 1-germana- phthalene proceed much more easily than the corresponding [4 + 4] reaction, both thermo- dynamically and kinetically; while most [4 + 2] paths have lower activation barrier than the corres- ponding [2 + 2] ones. As the number of six-membered aromatic rings in reactant molecules becomes larger, [2 + 2], [4 + 2] and [4 + 4] reactions become easier to proceed. The influence of substituents at the Ge atom of germabenzenes on the potential energy surface of [2 + 2] and [4 + 2] reactions correlates with their electronic properties and volume. Solvent effect is not crucial for the potential energy surfaces of the studied reactions.展开更多
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural...The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.展开更多
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso...The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.展开更多
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers...A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.展开更多
Trialuminide alloys of elements such as Ti. Nb or Zr are of particular interest as materials for high temperature usage because their density is very low and specific strength and elastic rnoduli are then very high. T...Trialuminide alloys of elements such as Ti. Nb or Zr are of particular interest as materials for high temperature usage because their density is very low and specific strength and elastic rnoduli are then very high. This report concentrates on recent work on Al3Ti alloys which have been alloyed with ternary elements such that the higher symmetry ordered cubic structure is obtained, leading to somewhat easier operation of deformation mechan isms and hence improved ductility and toughness.Fine details of the crystal structure of cubic trialuminides are considered here and it is shown that the materials generally possess some remnant tetragonal chemical ordering which can affect their me chanical behaviour. In addition the compositional range over which a stable single phase is retained is shown to be extremely small, such that in most cases the materials examined show some form of microstructural instability. These instabilities affect the mechanical behaviour of the materials, for exarnple producing general strengthening. leading to precipitation hardening du ring hig h temperature testing, and causing age hardening instabilities during high temperature static or dynamic testing.Such structural instabifity feads to significant modifications at superdislocations, affecting both the dislocation cores and their associated APB's. Failure for these cubic materials still occurs at very small plastic strains and seems to be determined by difficulties of superdislocation creation near a propagating crack rather than by problems of suitable dislocation configuration and mobility. Possible ways to enhance ductility and toughness by alloying and microstructural modification will be discussed.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41402126)
文摘ObjectiveThis study aims to characterize the occurrences and interior structural features of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin of Southwestern China, and to shed light on their formation mechanism.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金Science Council of Shandong Province!under Grant No.89F0274
文摘The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.
基金supported by the National Natural Science Foundation of China(No.20471008)the Natural Science Foundation of Chongqing(No.cstc2011jjA50013)the Chongqing Municipal Commission of Education(No.KJ111310)
文摘The geometric structure, mechanism of detonation initiation and stability of transition metal carbohydrazide (CHZ) nitrates are investigated via density functional theory. The obtained results show that the Heyd-Scuseria-Ernzerhof (HSE) functional yields the most accurate geometry. The initiating reaction of detonation in [Mn(CHZ)3](NO3)2 and [Zn(CHZ)3](NO3)2 is the formation of NO3 radicals. The calculated heat of formation and energy gap predict that the Mn and Zn complexes, which have the half-filled (3d5) and full-filled (3d10) electron configurations for the transition metal ions, respectively are more stable than the Co, Ni and Cu complexes. This indicates that the electron configuration of transition metal ion plays an important role in the stabilities of these energetic complexes.
基金supported by the Global Research Laboratory Program(2011-0021874)Brain Korea 21 Program,the Global Core Research Center(GCRC)Program(20110030001)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(MSIP)
文摘The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has evolved barrier systems to protect CNS tissue from the external environment. This barrier is a membrane composed of tightly apposed cells and is selectively permeable to specific molecules by way of membrane transporters.
文摘The main features of morphological model of industrial robots are discussed, such as support system, manipulator and gripping device. These features are presented with the alternatives for their realization as separate modules. The examples of synthesis of arrangements of industrial robots are resulted on module principle with writing of their morphological formulas.
文摘This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.
基金Supported by National Natural Science Foundation of China(Grant No.51375288)Science and Technology Program of Guangdong Province of China(Grant No.2020ST004)+1 种基金Department of Education of Guangdong Province of China(Grant No.2017KZDXM036and Special Project for Science and Technology Innovation Team of Foshan City of China(Grant No.2018IT100052).
文摘As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexterity demands.The hyper-redundant bionic robots can complete complex tasks in the unstructured environments by simulating the motion characteristics of the elephant’s trunk and octopus tentacles.Compared with traditional robots,the hyper-redundant bionic robots can accomplish complex tasks because of their flexible structure.A hyper-redundant elephant’s trunk robot(HRETR)with an open structure is developed in this paper.The content includes mechanical structure design,kinematic analysis,virtual prototype simulation,control system design,and prototype building.This design is inspired by the flexible motion of an elephant’s trunk,which is expansible and is composed of six unit modules,namely,3UPS-PS parallel in series.First,the mechanical design of the HRETR is completed according to the motion characteristics of an elephant’s trunk and based on the principle of mechanical bionic design.After that,the backbone mode method is used to establish the kinematic model of the robot.The simulation software SolidWorks and ADAMS are combined to analyze the kinematic characteristics when the trajectory of the end moving platform of the robot is assigned.With the help of ANSYS,the static stiffness of each component and the whole robot is analyzed.On this basis,the materials of the weak parts of the mechanical structure and the hardware are selected reasonably.Next,the extensible structures of software and hardware control system are constructed according to the modular and hierarchical design criteria.Finally,the prototype is built and its performance is tested.The proposed research provides a method for the design and development for the hyper-redundant bionic robot.
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175029,51475035)
文摘Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
基金Supported by the National Natural Science Foundation of China under Grant No 50871009, the National Magnetic Confinement Fusion Program under Grant No 2009GB106003, and the Fundamental Research Funds for the Central Universities under Grant No YWF-10-01-B20.
文摘We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.
文摘In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
基金Henan Provincial Fundamental and Frontier Technological Research Program (No. 092300410207)
文摘Density functional theory (DFT) calculations, at the B3LYP/6-311G** level of theory, were performed to study the reaction mechanism and potenti4the potential energy surface of the studied reactions was investigated. Our calculation results show that [2 + 2] and [4 + 4] reactions are concerted and synchronous processes; while [4 + 2] reactions proceed via a concerted but asynchronous way in general. [2 + 2] and [4 + 2] reactions of germabenzenes and 1-germana- phthalene proceed much more easily than the corresponding [4 + 4] reaction, both thermo- dynamically and kinetically; while most [4 + 2] paths have lower activation barrier than the corres- ponding [2 + 2] ones. As the number of six-membered aromatic rings in reactant molecules becomes larger, [2 + 2], [4 + 2] and [4 + 4] reactions become easier to proceed. The influence of substituents at the Ge atom of germabenzenes on the potential energy surface of [2 + 2] and [4 + 2] reactions correlates with their electronic properties and volume. Solvent effect is not crucial for the potential energy surfaces of the studied reactions.
文摘The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.
基金support from the Natural Science Foundation of China(91016029,91216302,and 91216301)
文摘The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.
基金Funded by the National Natural Science Foundation of China(51572208)the 111 Project(B13035)+1 种基金the National Natural Science Foundation of Hubei Province(2014CFB257 and 2014CFB258)the Fundamental Research Funds for the Central Universities(WUT:2015-III-059)
文摘A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.
文摘Trialuminide alloys of elements such as Ti. Nb or Zr are of particular interest as materials for high temperature usage because their density is very low and specific strength and elastic rnoduli are then very high. This report concentrates on recent work on Al3Ti alloys which have been alloyed with ternary elements such that the higher symmetry ordered cubic structure is obtained, leading to somewhat easier operation of deformation mechan isms and hence improved ductility and toughness.Fine details of the crystal structure of cubic trialuminides are considered here and it is shown that the materials generally possess some remnant tetragonal chemical ordering which can affect their me chanical behaviour. In addition the compositional range over which a stable single phase is retained is shown to be extremely small, such that in most cases the materials examined show some form of microstructural instability. These instabilities affect the mechanical behaviour of the materials, for exarnple producing general strengthening. leading to precipitation hardening du ring hig h temperature testing, and causing age hardening instabilities during high temperature static or dynamic testing.Such structural instabifity feads to significant modifications at superdislocations, affecting both the dislocation cores and their associated APB's. Failure for these cubic materials still occurs at very small plastic strains and seems to be determined by difficulties of superdislocation creation near a propagating crack rather than by problems of suitable dislocation configuration and mobility. Possible ways to enhance ductility and toughness by alloying and microstructural modification will be discussed.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.