In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanni...In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanning calorimetry and differential dilatometry.The results indicate that this AZ91 alloy undergoes a phase transformation during aging,a discontinuous precipitation of theβphase(Mg_(17)Al_(12))at 150℃at the grain boundaries and another continuous at 350℃within the grains.The activation energy of the dissolution reaction of theβphase(Mg_(17)Al_(12))under non-isothermal conditions is 116.781 kJ/mol,while it is 129.7383 kJ/mol under isothermal conditions.The Avrami coefficient,n,relevant for the dissolution kinetics of theβphase(Mg_(17)Al_(12))is 1.152 and 1.211 in the non-isothermal and isothermal conditions respectively.The numerical coefficients m and Avrami n are 0.993 and 1.152.展开更多
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s...The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.展开更多
Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevit...Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevitable,and even worse,due to a trend of big-size cell design,typically such as 4680 and blade cells,which accelerated a battery failure during repeat lithiation and delithiation of cathodes.Inspire by that,two big-size pouch cells with big sizes,herein,are selected to reveal the ion-diffusion dependency of the cathodes at different locations.Interestingly,we find that the LiCoO_(2) pouch cell exhibits ~5 A h loss after 120 charge-discharge cycles,but a 15 A h loss is verified in a LiNixMnyCO_(1-x)-yO_(2)(NCM) cell.Synchrotron-based imaging analysis indicates that higher ion-diffusion rates in the LiCoO_(2)than that in the LiNixMnyCO_(1-x)-yO_(2)is the determined factor for the anisotropic cathode fading,which is responsible for a severe mechanical issue of particle damage,such as cracks and even pulverization,in the cathode materials.Meanwhile,we verify the different locations at the near-tab and bottom of the electrode make it worse due to the ion-diffusion kinetics and temperature,inducing a spatially uneven electrochemistry in the big-size pouch cell.The findings give an in-depth insight into pouch cell failure and make a guideline for high-energy cell design and development.展开更多
The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on wh...The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.展开更多
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli...The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.展开更多
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement...The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.展开更多
A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground th...A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen.展开更多
Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium ...Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium silicate were designed for MAO.The surface morphology,composition,and properties of MAO coatings on Ti-6Al-4V alloy treated in 0.10 mol/L electrolyte were investigated to reveal the effect of PO_(4)^(3-)and SiO_(3)^(2-)ray diffraction,and potentiodynamic polarization.The results showed that PO_(4)^(3-)is beneficial for generating microarcs and forming pores within the coating,resulting in a thick but porous coating.SiO_(3)^(2-)eration of microarcs,resulting in a thin dense coating.The thickness,density,phases content,and polarization resistance of the MAO coatings are primarily affected by the intensity of microarcs for low SiO_(3)^(2-)ciently high.The thickness of MAO coatings obtained in P/Si electrolytes shows a piecewise linear increase with increasing process time during the three stages of microarc discharge.SiO_(3)^(2-)discharge,but slows down the growth of the coating formed in the next stage.展开更多
Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al inte...Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.展开更多
The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its therm...The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.展开更多
In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a ...In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.展开更多
The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa...The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed展开更多
The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by el...The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.展开更多
The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) we...The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level. Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.展开更多
The kinetics and the mechanism of the formation reactions of M(PnAO)^(2+)(M=Ni,Co,Cu)were studied with UV Spectrophotometer and Stopped Flow Spectrophotometer and a three steps mechanism was suggested.
It is found that acetoacetanilide possesses very high promoting reactivity towards ceric ion in initiating polymerization of vinyl monomer. The kinetics of acrylamide polymerization and the activation energies were st...It is found that acetoacetanilide possesses very high promoting reactivity towards ceric ion in initiating polymerization of vinyl monomer. The kinetics of acrylamide polymerization and the activation energies were studied. The initiation mechanism of ceric/acetoacetanilide is proposed on the basis of experimental results of FT-IR and ESR.展开更多
The basic mechanism and kinetics of the transformation process of alumina inclusions in steel was reported when calcium introduced into the steel by wire feeding orpowder injection. To clarify the mechanisms model, ex...The basic mechanism and kinetics of the transformation process of alumina inclusions in steel was reported when calcium introduced into the steel by wire feeding orpowder injection. To clarify the mechanisms model, experiments were performed by studying reactions between AltOs and CaO in a laboratory furnace and by performing calcium treatments in an 8kg induction furnace for Al deoxidised melt. The phases formed during the reaction between Al2O3 and CaO were examined by SEM-EDS (scanning electron microscope-energy dispersive spectrometer), and the reaction sequence of Al2O3=〉 CA6=〉 CA2 =〉 CA =〉 CAx(l) was discussed in term of the experimental observations. The kinetics of the reaction of calcium with alumina inclusions were simulated by immersing alumina plates in a Ca treated steel melt in the induction furnace. Results were compared with observations of real inclusion transformation. A kinetic model was proposed based on the results.展开更多
The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
基金founded by Taif University,Taif,Saudi Arabia (TU-DSPP-2024-63).
文摘In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanning calorimetry and differential dilatometry.The results indicate that this AZ91 alloy undergoes a phase transformation during aging,a discontinuous precipitation of theβphase(Mg_(17)Al_(12))at 150℃at the grain boundaries and another continuous at 350℃within the grains.The activation energy of the dissolution reaction of theβphase(Mg_(17)Al_(12))under non-isothermal conditions is 116.781 kJ/mol,while it is 129.7383 kJ/mol under isothermal conditions.The Avrami coefficient,n,relevant for the dissolution kinetics of theβphase(Mg_(17)Al_(12))is 1.152 and 1.211 in the non-isothermal and isothermal conditions respectively.The numerical coefficients m and Avrami n are 0.993 and 1.152.
基金supported by the Natural Science Foundation of China under Grant(No.52172099)the Provincial Joint Fund of Shaanxi(2021JLM-28).
文摘The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.
基金supported by the Natural Science Foundation of Heilongjiang Province (LH2021E031)National Key Research and Development Program of China (2021YFB2011200)funds from Chongqing Research Institute of HIT。
文摘Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevitable,and even worse,due to a trend of big-size cell design,typically such as 4680 and blade cells,which accelerated a battery failure during repeat lithiation and delithiation of cathodes.Inspire by that,two big-size pouch cells with big sizes,herein,are selected to reveal the ion-diffusion dependency of the cathodes at different locations.Interestingly,we find that the LiCoO_(2) pouch cell exhibits ~5 A h loss after 120 charge-discharge cycles,but a 15 A h loss is verified in a LiNixMnyCO_(1-x)-yO_(2)(NCM) cell.Synchrotron-based imaging analysis indicates that higher ion-diffusion rates in the LiCoO_(2)than that in the LiNixMnyCO_(1-x)-yO_(2)is the determined factor for the anisotropic cathode fading,which is responsible for a severe mechanical issue of particle damage,such as cracks and even pulverization,in the cathode materials.Meanwhile,we verify the different locations at the near-tab and bottom of the electrode make it worse due to the ion-diffusion kinetics and temperature,inducing a spatially uneven electrochemistry in the big-size pouch cell.The findings give an in-depth insight into pouch cell failure and make a guideline for high-energy cell design and development.
基金Project(NCET-10-0834)supported by the Program for New Century Excellent Talents in University,China
文摘The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.
基金Project(51464008) supported by the National Natural Science Foundation of ChinaProject(KY[2012]004) supported by the Key Laboratory Item of Education Office in Guizhou Province,China
文摘The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.
基金Supported by the National Natural Science Foundation of China(No.20071026)
文摘The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.
基金financial support from the National Science and Technology Major Project of China(Grant No. 2008ZX05018)Taishan Scholar Constructive Engineering Foundation of Shandong province(No. ts20120518)
文摘A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen.
基金financially supported by China Postdoctoral Science Foundation (No.2021M700569)Chongqing Postdoctoral Science Foundation (No.cstc2021jcyj-bsh0133)
文摘Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium silicate were designed for MAO.The surface morphology,composition,and properties of MAO coatings on Ti-6Al-4V alloy treated in 0.10 mol/L electrolyte were investigated to reveal the effect of PO_(4)^(3-)and SiO_(3)^(2-)ray diffraction,and potentiodynamic polarization.The results showed that PO_(4)^(3-)is beneficial for generating microarcs and forming pores within the coating,resulting in a thick but porous coating.SiO_(3)^(2-)eration of microarcs,resulting in a thin dense coating.The thickness,density,phases content,and polarization resistance of the MAO coatings are primarily affected by the intensity of microarcs for low SiO_(3)^(2-)ciently high.The thickness of MAO coatings obtained in P/Si electrolytes shows a piecewise linear increase with increasing process time during the three stages of microarc discharge.SiO_(3)^(2-)discharge,but slows down the growth of the coating formed in the next stage.
基金the financial supports from the S&T Program of Hebei Province,China(No.20373901D)the National Natural Science Foundation of China(Nos.51807047,51804095)+2 种基金the National Science Foundation of Hebei Province,China(No.E2019402433)the Youth Top Talents Science and Technology Research Project of Hebei Province University,China(No.BJ2019003)the Research and Development Project of Science and Technology of Handan City,China(No.19422111008-19).
文摘Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.
文摘The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement with Zelinsky Institute of Organic Chemistry RAS Grant No.075-15-2020-803).
文摘In this work, comprehensive studies of 2,4-dinitroanisole(2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→a in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8-9months, with a change in ambient temperature from minus 30℃ to plus 30℃, a complete polymorphic transition β→a occurs. When stored in conditions below minus 5℃, polymorphic transition does not occur. When stored in conditions above plus 30℃ in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%-1.5% and an increase in melting temperature by 10-12℃, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68-70 k J/mol(16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 k J/mol(26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.
文摘The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed
文摘The salicylaldehyde salicylhydrazone and its complex of Er(Ⅲ) were synthesized. The formulae K·4H_2O(HL=[C_(14)H_(10)N_2O_3]^(2-), the bivalent form of the salicylaldehyde salicylhydrazone) were determined by elemental analysis and EDTA volumetric analysis. Molar conductance, IR, UV and X-ray power diffraction were carried out for the characterizations of the complex and the ligand. There are two stable five-numbered and six-numbered circles in the complex. The thermal decompositions of the ligand and the complex with the kinetic study are carried out by non-isothermal thermogravimetry. The stages of the decompositions were identified by TG-DTG curve. The non-isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by the corresponding kinetic parameters.The activation energy value of the main step decomposition are also calculated by Kissinger′s method and Ozawa′s method.
基金supported by the Youth Fund Project of Anhui Normal University (No. 2006xqn65)
文摘The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level. Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.
文摘The kinetics and the mechanism of the formation reactions of M(PnAO)^(2+)(M=Ni,Co,Cu)were studied with UV Spectrophotometer and Stopped Flow Spectrophotometer and a three steps mechanism was suggested.
文摘It is found that acetoacetanilide possesses very high promoting reactivity towards ceric ion in initiating polymerization of vinyl monomer. The kinetics of acrylamide polymerization and the activation energies were studied. The initiation mechanism of ceric/acetoacetanilide is proposed on the basis of experimental results of FT-IR and ESR.
文摘The basic mechanism and kinetics of the transformation process of alumina inclusions in steel was reported when calcium introduced into the steel by wire feeding orpowder injection. To clarify the mechanisms model, experiments were performed by studying reactions between AltOs and CaO in a laboratory furnace and by performing calcium treatments in an 8kg induction furnace for Al deoxidised melt. The phases formed during the reaction between Al2O3 and CaO were examined by SEM-EDS (scanning electron microscope-energy dispersive spectrometer), and the reaction sequence of Al2O3=〉 CA6=〉 CA2 =〉 CA =〉 CAx(l) was discussed in term of the experimental observations. The kinetics of the reaction of calcium with alumina inclusions were simulated by immersing alumina plates in a Ca treated steel melt in the induction furnace. Results were compared with observations of real inclusion transformation. A kinetic model was proposed based on the results.
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.