Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engin...Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon- related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a ootential stem cell source for tissue enEineerin~ of tendon-like tissue.展开更多
The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavo...[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.展开更多
The refining performances of mixed poplar and eucalyptwoodchips(mixture ratio 6:4)were investigated at medium and highpulp consistency via chemi-mechanical pulping(CMP).The specificrefining energy consumption(SEC),fib...The refining performances of mixed poplar and eucalyptwoodchips(mixture ratio 6:4)were investigated at medium and highpulp consistency via chemi-mechanical pulping(CMP).The specificrefining energy consumption(SEC),fiber fraction proportion,andCanadian standard freeness(CSF)were determined to evaluate the effectsof pulp consistency and NaOH dosage on the refining performancesof mixed poplar and eucalypt woodchips.While the dosage of NaOHfor impregnation was maintained constant,the SEC and shive contentincreased with increasing pulp consistency.Different fractions obtainedfrom the Bauer-McNett classifier showed that higher pulp consistencycould be expected to yield more long fibers and shive in the stock.Upon increasing the NaOH dosage,the shive content and SEC reducedsignificantly.When the NaOH dosage was increased to 6%,the resultsindicated that it was difficult to reduce the shive content to less than 1%athigh pulp consistencies(25%~35%),whereas 0.18%shive fraction couldbe achieved at a medium pulp consistency(15%).展开更多
One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ...One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.展开更多
Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results...Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results efficiency of multi-range HMT changes continuously with output speed in speed range and is higher than the highest point of the hydraulic efficiency,The volumetric efficiency can potentially result in the speed fluctuation, which can be reduced or eliminated through controlling the ratio of the displacements ofhydraulic unity properly or changing the point of range exchanging .And the mechanical- constant output torque or different output torque under the condition of constant pressure when the transmission works in different parts of a range,Conclusion The multi-range HMT is an ideal stepless transmission with high efficiency.展开更多
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,...The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...展开更多
Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and str...Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and strain rate range of 0.011.00 s1. The results show that the peak flow stress and steady stress are sensitive to the strain rate and temperature. The value of deformation activation energy is 890.49 kJmo11 in (a+β) region. Dynamic recrystallization is the major deformation mecha nism. Flow softening is dominated by dynamic recrystallization at 850950 ℃. TiB particles promote the recrystallization of laths. Globularization processes consist of four steps: for mation of subgrain after dynamic recovery in a plates; subgrain boundary migration caused by interracial instability; interfacial migration promoting phase wedge into a phase; disintegrating of a laths by diffusion processes; and grain boundary sliding. Globularization mechanisms during hot deformation processes of the Ti6A14V0.1B alloy with lamellar structure are continuous dynamic recrystallization.展开更多
Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtai...Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.展开更多
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ...In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.展开更多
Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound ...Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.展开更多
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
Warp knitting technology gets rapid development at present and becomes one of the most important parts of the textiles.But it is less known how the parameters of warp knitting technology affect the mechanical properti...Warp knitting technology gets rapid development at present and becomes one of the most important parts of the textiles.But it is less known how the parameters of warp knitting technology affect the mechanical properties of warp-knitted fabrics.This paper presents discuss a research on the relationships between run-in ratio and mechanical properties of the two-bar warp-knittedfabrics through the measurement and analysis of the mechanical properties of various samples with different run-in ratios.The optimal run一in ratios for the reasonable mechanical properties are obtained from above dis-展开更多
The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetr...The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.展开更多
In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heat...In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heating can excite the CISK-Kelvm wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere.The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.展开更多
The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensive...The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Grobner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Grobner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9 × 9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix.展开更多
In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combin...In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes.The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.展开更多
This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabric...This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabrics in terms of the low - stress mechanical properties of bending, shear, and tensile deformation. It is found that there are very significant correlations between the corresponding parameters for extensibility and shear rigidity obtained from the test results of the two systems. The correlation between the values of bending rigidity obtained from the two systems is only moderate. Furthermore, for the fabrics tested in this study, the values of bending rigidity, shear rigidity, and extensibility measured using the KES - F instruments are higher than those of the corresponding parameters measured using the FAST instruments. The linear regression equation is given for each pair of corresponding parameter.展开更多
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w...In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.展开更多
基金supported by the Natural Science Foundation of China (81171470 and 81100761)the key clinical specialty discipline construction programme of Fujian, Chinathe Key Project of Science and Technology Bureau of Jiangsu Province (BL2013002)
文摘Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon- related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a ootential stem cell source for tissue enEineerin~ of tendon-like tissue.
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金Supported by Youth Fund Project of Zhaoqing University(QZ202235)Zhaoqing Science and Technology Plan Project(2022040311011).
文摘[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.
文摘The refining performances of mixed poplar and eucalyptwoodchips(mixture ratio 6:4)were investigated at medium and highpulp consistency via chemi-mechanical pulping(CMP).The specificrefining energy consumption(SEC),fiber fraction proportion,andCanadian standard freeness(CSF)were determined to evaluate the effectsof pulp consistency and NaOH dosage on the refining performancesof mixed poplar and eucalypt woodchips.While the dosage of NaOHfor impregnation was maintained constant,the SEC and shive contentincreased with increasing pulp consistency.Different fractions obtainedfrom the Bauer-McNett classifier showed that higher pulp consistencycould be expected to yield more long fibers and shive in the stock.Upon increasing the NaOH dosage,the shive content and SEC reducedsignificantly.When the NaOH dosage was increased to 6%,the resultsindicated that it was difficult to reduce the shive content to less than 1%athigh pulp consistencies(25%~35%),whereas 0.18%shive fraction couldbe achieved at a medium pulp consistency(15%).
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA040202)
文摘One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.
文摘Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results efficiency of multi-range HMT changes continuously with output speed in speed range and is higher than the highest point of the hydraulic efficiency,The volumetric efficiency can potentially result in the speed fluctuation, which can be reduced or eliminated through controlling the ratio of the displacements ofhydraulic unity properly or changing the point of range exchanging .And the mechanical- constant output torque or different output torque under the condition of constant pressure when the transmission works in different parts of a range,Conclusion The multi-range HMT is an ideal stepless transmission with high efficiency.
基金supported by the National Natural Science Foundation of China (50871035)the Ph.D. Programs Foundation of Ministry of Education of China (20060213017)
文摘The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...
基金supported by the International Science and Technology Corporation Foundation of China(No.2012DFG51540)
文摘Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and strain rate range of 0.011.00 s1. The results show that the peak flow stress and steady stress are sensitive to the strain rate and temperature. The value of deformation activation energy is 890.49 kJmo11 in (a+β) region. Dynamic recrystallization is the major deformation mecha nism. Flow softening is dominated by dynamic recrystallization at 850950 ℃. TiB particles promote the recrystallization of laths. Globularization processes consist of four steps: for mation of subgrain after dynamic recovery in a plates; subgrain boundary migration caused by interracial instability; interfacial migration promoting phase wedge into a phase; disintegrating of a laths by diffusion processes; and grain boundary sliding. Globularization mechanisms during hot deformation processes of the Ti6A14V0.1B alloy with lamellar structure are continuous dynamic recrystallization.
基金sponsored by the National Natural Science Foundation of China(Grant No.51504165)the Project funded by the China Postdoctoral Science Foundation(Grant No.2016M601271)Tianjin Scince&Technology Project(Grant No.16JCQNJC02600)
文摘Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.
基金This study is financially supported by the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(1632021002).
文摘In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation(Grant No.0418010)the Joint Foundation of Guizhou Normal University(Grant No.7341)
文摘Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
文摘Warp knitting technology gets rapid development at present and becomes one of the most important parts of the textiles.But it is less known how the parameters of warp knitting technology affect the mechanical properties of warp-knitted fabrics.This paper presents discuss a research on the relationships between run-in ratio and mechanical properties of the two-bar warp-knittedfabrics through the measurement and analysis of the mechanical properties of various samples with different run-in ratios.The optimal run一in ratios for the reasonable mechanical properties are obtained from above dis-
基金Projects(22108114, 5180031184) supported by the National Natural Science Foundation of China。
文摘The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.
文摘In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heating can excite the CISK-Kelvm wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere.The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.
基金Supported by National Natural Science Foundation of China(Grant No.51375059)National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA040203)+1 种基金Special Fund for Agro-scientific Research in the Public Interest of China(Grant No.201313009-06)National Key Technology R&D Program of the Ministry of Science and Technology of China(Grant No.2013BAD17B06)
文摘The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Grobner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Grobner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9 × 9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix.
文摘In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes.The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.
基金This project was generously funded by International Wool Secretariat
文摘This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabrics in terms of the low - stress mechanical properties of bending, shear, and tensile deformation. It is found that there are very significant correlations between the corresponding parameters for extensibility and shear rigidity obtained from the test results of the two systems. The correlation between the values of bending rigidity obtained from the two systems is only moderate. Furthermore, for the fabrics tested in this study, the values of bending rigidity, shear rigidity, and extensibility measured using the KES - F instruments are higher than those of the corresponding parameters measured using the FAST instruments. The linear regression equation is given for each pair of corresponding parameter.
基金supported by the National Natural Science Foundation of China (No. 51234007, No. 51490654, No. 51504276, and No. 51504277)Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)+3 种基金the Natural Science Foundation of Shandong Province (ZR2014EL016, ZR2014EEP018)China Postdoctoral Science Foundation (No. 2014M551989 and No. 2015T80762)the Major Programs of Ministry of Education of China (No. 311009)Introducing Talents of Discipline to Universities (B08028)
文摘In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.