The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of soun...The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.展开更多
An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanis...An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features:(1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and(2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.展开更多
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shal...The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shallow circle tunnel is not taken into consideration so that the mechanical characteristics can be easily described. Based on the mechanism, the upper bound solution of supporting pressure of tunnels under the condition of surface settlements and overloads on the ground surface is derived. The objective function is formed from virtual work equations under the variational principle, and solutions are presented by the optimum theory. Comparisons with previous works are made. The numerical results of the present method show great agreement with those of existing ones. With regard to the surface settlement and overloads, the influence of different rock parameters on the collapsing shape is analyzed.展开更多
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati...For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.展开更多
The analytical solutions for predicting the exact shape of collapse mechanisms in shallow tunnels with arbitrary excavation profiles were obtained by virtue of the upper bound theorem of limit analysis and variation p...The analytical solutions for predicting the exact shape of collapse mechanisms in shallow tunnels with arbitrary excavation profiles were obtained by virtue of the upper bound theorem of limit analysis and variation principle according to Hoek-Brown failure criterion. The seepage force was included in the upper bound limit analysis, and it was computed from the gradient of excess pore pressure distribution. The seepage was regarded as a work rate of external force. The numerical results of roof collapse in square and circular tunnels with different rock parameters were derived and discussed, which proves to be valid in comparison with the previous work. The influences of different parameters on the shape of collapsing blocks were also discussed.展开更多
For tunnels being excavated through multiple knowledge of the aquifers’hydraulic head becomes essential for determining groundwater inflow into the tunnel and analyzing its stability,specifically using multilevel mon...For tunnels being excavated through multiple knowledge of the aquifers’hydraulic head becomes essential for determining groundwater inflow into the tunnel and analyzing its stability,specifically using multilevel monitoring systems.In the multi-aquifer alluvial section of the Glas tunnel(Iran),since the hydraulic head calculations were based on the data obtained from single-piezometer boreholes,the excavation risk was assessed to be at high level and the tunnel seemed to be unstable,thus an incorrect conclusion was derived from the misleading data.To take cost mitigation measures into account,it was necessary to calculate the hydraulic head at tunnel level accurately.By installing nested and clustered wells the mean hydraulic head was measured to be 70 m,significantly different from the 90 m previously determined by boreholes.Considering the updated value,the groundwater inflow and bulkhead load,formerly calculated as 0.65 m^(3)/s and 9.5 bars,were determined to be 0.49 m^(3)/s and 7.5 bars,respectively.展开更多
This paper reports on planning and construction related results from research performed at the Collaborative Research Center“Interaction Modeling in Mechanized Tunneling”at Ruhr-University Bochum,Germany.Research co...This paper reports on planning and construction related results from research performed at the Collaborative Research Center“Interaction Modeling in Mechanized Tunneling”at Ruhr-University Bochum,Germany.Research covers a broad spectrum of topics relevant for mechanized tunneling in soft soil conditions.This includes inverse numerical methods for advance exploration and models for the characterization of the in situ ground conditions,the interaction of the face support and the tail gap grouting with the porous soil,multi-scale models for the design offiber reinforced segmental linings with enhanced robustness,computational methods for the numer-ical simulation of the tunnel advancement,the soil excavation and the material transport in the pressure chamber,logistics processes and risk analysis in urban tunneling.Targeted towards the continuous support of the construction process,a concept for real-time steering support of tunnel boring machines in conjunction with model update procedures and methods of uncertainty quantification is addressed.展开更多
Design methods for segmental tunnel linings used in mechanized tunnel constructions typically employ numerical bedded beam mod-els and/or classical analytical solutions for the determination of structural forces(i.e.m...Design methods for segmental tunnel linings used in mechanized tunnel constructions typically employ numerical bedded beam mod-els and/or classical analytical solutions for the determination of structural forces(i.e.moments and shear and axial forces)and simple load spreading assumptions for the design of the reinforcement in joint areas.However effcient such methods may be,many physical details are often overlooked and/or oversimplified in the process of reducing the actual structure to a structural beam model,e.g.ana-lytically derived loadings are employed,the grouting and ground reactions are reduced to a spring bedding,and the confinement due to grouting at the longitudinal joint is largely not considered in reinforcement design.Such a design process is not able to account for,or predict,the susceptibility of tunnel linings to often observed damages that,although they may not be structurally relevant,lead to ser-viceability or durability issues,such as crack development or chipping at the segment corners.Numerical methods,such as the Finite Element Method,provide an opportunity to model the segmental tunnel lining and its response to the entire TBM construction process and to explicitly model the crack development within individual segments using modern methods to model the discontinuities in struc-tures.In this contribution,a holistic modeling procedure for the representation of the tunnel lining within the tunneling process is pro-posed and compared to traditional lining models.A 3D process oriented Finite Element model is used to calculate the predicted forces on the tunnel lining and the obtained results are compared with those generated by traditional methods.Subsequently,the predicted defor-mations are then transferred to a detailed segment model in which the nonlinear response of the segment at the longitudinal joint is mod-eled using an interface element based approach to simulate concrete cracking.展开更多
When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters...When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters of the surrounding soil.Performing inverse analysis on the basis of in situ settlement data is an effcient method for obtaining such information.However,during this process,con-sidering which measurement arrangement can provide the most reliable results is generally neglected.This aspect is addressed in this study by applying the so-called“optimal experimental design”to the mechanized tunnelingfield.A global sensitivity analysis(GSA)isfirstly performed to determine the most relevant model parameters to be identified via back analysis,by employing the considered numerical model and experimental data.Furthermore,the GSA results are utilized to determine where and when measurements should be performed to minimize uncertainty in the identified constitutive parameters.The optimal experimental design(OED)concept is fur-ther applied to evaluate the observation set-up effciency for damage mitigation measures within a representative synthetic example of a tunneling project passing beneath an existing building.Parameter identification based on synthetic noisy experiments is performed to validate the presented method for optimal experimental design.Thus,the soil stiffness and strength parameters are identified according to both an intuitive and the elaborated method,employing the proposed OED strategy and experimental designs,making it possible to assess the feasibility of the OED results.展开更多
Tunnel boring machines require extensive maintenance and inspection effort to provide a high availability.The cutting tools of the cutting wheel must be changed timely upon reaching a critical condition.While one poss...Tunnel boring machines require extensive maintenance and inspection effort to provide a high availability.The cutting tools of the cutting wheel must be changed timely upon reaching a critical condition.While one possible maintenance strategy is to change tools only when it is absolutely necessary,tools can also be changed preventively to avoid further damages.Such different maintenance strategies influence the maintenance duration and the overall project performance.However,determine downtime related to a particular mainte-nance strategy is still a challenging task.This paper shows an analysis of the robustness to achieve the planned project performance of a maintenance strategy considering uncertainties of wear behavior of the cutting tools.A simulation based analysis is presented,imple-menting an empirical wear prediction model.Different strategies of maintenance planning are compared by performing a parameter vari-ation study including Monte-Carlo simulations.The maintenance costs are calculated and evaluated with respect to their robustness.Finally,an improved and robust maintenance strategy has been determined.展开更多
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) ...GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.展开更多
The performance of metal-insulator-semiconductor (MIS) type tunneling diodes based on ZnO nanostructures is investigated through modeling. The framework used in this work is the Schr6dinger equation with an effectiv...The performance of metal-insulator-semiconductor (MIS) type tunneling diodes based on ZnO nanostructures is investigated through modeling. The framework used in this work is the Schr6dinger equation with an effective-mass approximation. The working mechanism of the MIS type tunneling diode is investigated by examining the electron density, electric field, electrostatic potential, and conduction band edge of the device. We show that a valley in the electrostatic potential is formed at the ZnO/MgO interface, which induces an energy barrier at the ZnO side of this interface. Therefore, electrons need to overcome two barriers: the high and narrow MgO barrier, and the barrier from the depletion region induced at the ZnO side of the ZnO/MgO interface. As the MgO layer becomes thicker, the valley in electrostatic potential becomes deeper. At the same time, the barrier induced at the ZnO/MgO interface becomes higher and wider. This leads to a fast decrease in the current passing through the MIS diode. We optimize the thickness of the MgO insulating layer, sandwiched between a ZnO film (in this work we use a single ZnO nanowire) and a metal contact, to achieve maximum performance of the diode, in terms of rectification ratio. An optimal MgO layer thickness of 1.5 nm is found to yield the highest rectification ratio, of approximately 169 times that of a conventional metal-semiconductor-metal Schottky diode. These simulated results can be useful in the design and optimization of ZnO nanodevices, such as light emitting diodes and UV photodetectors.展开更多
Rock abrasivity influences wear of cutting tools and consequently,performance of mechanized tunneling ma-chines.Several methods have been proposed to evaluate rock abrasivity in recent decades,each one has its own adv...Rock abrasivity influences wear of cutting tools and consequently,performance of mechanized tunneling ma-chines.Several methods have been proposed to evaluate rock abrasivity in recent decades,each one has its own advantages.In this paper,a new method is introduced to estimate wear of disc cutters based on rock cutting tests using scaled down discs(i.e.54 and 72 mm diameter).The discs are made of H13 steel,which is a common steel type in producing real-scale discs,with hardness of 32 and 54 HRC.The small-scale linear rock cutting machine and a new abrasion test apparatus,namely University of Tehran abrasivity test machine,are utilized to perform the tests.Tip width of the worn discs is monitored and presented as the function of the accumulated test run to classify the rock abrasion.Abrasivity tests show that by increasing the uniaxial compressive strength(UCS)of the rock samples,wear rate is doubled gradually that reveals the sensitivity of the test procedure to the main pa-rameters affecting the abrasivity of hard rocks.For the rocks with the highest UCS,the normal wear stops after performing 5 to 10 rounds of the tests,and then,deformation of the disc tip is detectable.Two abrasivity indices are defined based on the abrasivity tests results and their correlations with Cerchar Abrasivity Index(CAI)and UCS are established.Comparison of the established correlations in this study with previous investigations dem-onstrates the sensitivity of the indices to the parameters affecting wear of the disc cutters and repeatability of the outputs obtained from abrasivity tests using scaled down discs.Findings of this study can be used to enhance the accuracy of rock abrasivity classifications.展开更多
文摘The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.
基金Project(41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2013006)supported by the Research Fund for Key Laboratory on Deep GeoDrilling Technology from the Ministry of Land and Resources of China
文摘An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features:(1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and(2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProjects(51178468,51378510)supported by the National Natural Science Foundation of China
文摘The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shallow circle tunnel is not taken into consideration so that the mechanical characteristics can be easily described. Based on the mechanism, the upper bound solution of supporting pressure of tunnels under the condition of surface settlements and overloads on the ground surface is derived. The objective function is formed from virtual work equations under the variational principle, and solutions are presented by the optimum theory. Comparisons with previous works are made. The numerical results of the present method show great agreement with those of existing ones. With regard to the surface settlement and overloads, the influence of different rock parameters on the collapsing shape is analyzed.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474188, 51074140 and 51310105020)the Natural Science Foundation of Hebei Province (No. E2014203012)the Program for Taihang Scholars
文摘For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProjects(51178468,51378510)supported by National Natural Science Foundation of China
文摘The analytical solutions for predicting the exact shape of collapse mechanisms in shallow tunnels with arbitrary excavation profiles were obtained by virtue of the upper bound theorem of limit analysis and variation principle according to Hoek-Brown failure criterion. The seepage force was included in the upper bound limit analysis, and it was computed from the gradient of excess pore pressure distribution. The seepage was regarded as a work rate of external force. The numerical results of roof collapse in square and circular tunnels with different rock parameters were derived and discussed, which proves to be valid in comparison with the previous work. The influences of different parameters on the shape of collapsing blocks were also discussed.
文摘For tunnels being excavated through multiple knowledge of the aquifers’hydraulic head becomes essential for determining groundwater inflow into the tunnel and analyzing its stability,specifically using multilevel monitoring systems.In the multi-aquifer alluvial section of the Glas tunnel(Iran),since the hydraulic head calculations were based on the data obtained from single-piezometer boreholes,the excavation risk was assessed to be at high level and the tunnel seemed to be unstable,thus an incorrect conclusion was derived from the misleading data.To take cost mitigation measures into account,it was necessary to calculate the hydraulic head at tunnel level accurately.By installing nested and clustered wells the mean hydraulic head was measured to be 70 m,significantly different from the 90 m previously determined by boreholes.Considering the updated value,the groundwater inflow and bulkhead load,formerly calculated as 0.65 m^(3)/s and 9.5 bars,were determined to be 0.49 m^(3)/s and 7.5 bars,respectively.
文摘This paper reports on planning and construction related results from research performed at the Collaborative Research Center“Interaction Modeling in Mechanized Tunneling”at Ruhr-University Bochum,Germany.Research covers a broad spectrum of topics relevant for mechanized tunneling in soft soil conditions.This includes inverse numerical methods for advance exploration and models for the characterization of the in situ ground conditions,the interaction of the face support and the tail gap grouting with the porous soil,multi-scale models for the design offiber reinforced segmental linings with enhanced robustness,computational methods for the numer-ical simulation of the tunnel advancement,the soil excavation and the material transport in the pressure chamber,logistics processes and risk analysis in urban tunneling.Targeted towards the continuous support of the construction process,a concept for real-time steering support of tunnel boring machines in conjunction with model update procedures and methods of uncertainty quantification is addressed.
文摘Design methods for segmental tunnel linings used in mechanized tunnel constructions typically employ numerical bedded beam mod-els and/or classical analytical solutions for the determination of structural forces(i.e.moments and shear and axial forces)and simple load spreading assumptions for the design of the reinforcement in joint areas.However effcient such methods may be,many physical details are often overlooked and/or oversimplified in the process of reducing the actual structure to a structural beam model,e.g.ana-lytically derived loadings are employed,the grouting and ground reactions are reduced to a spring bedding,and the confinement due to grouting at the longitudinal joint is largely not considered in reinforcement design.Such a design process is not able to account for,or predict,the susceptibility of tunnel linings to often observed damages that,although they may not be structurally relevant,lead to ser-viceability or durability issues,such as crack development or chipping at the segment corners.Numerical methods,such as the Finite Element Method,provide an opportunity to model the segmental tunnel lining and its response to the entire TBM construction process and to explicitly model the crack development within individual segments using modern methods to model the discontinuities in struc-tures.In this contribution,a holistic modeling procedure for the representation of the tunnel lining within the tunneling process is pro-posed and compared to traditional lining models.A 3D process oriented Finite Element model is used to calculate the predicted forces on the tunnel lining and the obtained results are compared with those generated by traditional methods.Subsequently,the predicted defor-mations are then transferred to a detailed segment model in which the nonlinear response of the segment at the longitudinal joint is mod-eled using an interface element based approach to simulate concrete cracking.
文摘When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters of the surrounding soil.Performing inverse analysis on the basis of in situ settlement data is an effcient method for obtaining such information.However,during this process,con-sidering which measurement arrangement can provide the most reliable results is generally neglected.This aspect is addressed in this study by applying the so-called“optimal experimental design”to the mechanized tunnelingfield.A global sensitivity analysis(GSA)isfirstly performed to determine the most relevant model parameters to be identified via back analysis,by employing the considered numerical model and experimental data.Furthermore,the GSA results are utilized to determine where and when measurements should be performed to minimize uncertainty in the identified constitutive parameters.The optimal experimental design(OED)concept is fur-ther applied to evaluate the observation set-up effciency for damage mitigation measures within a representative synthetic example of a tunneling project passing beneath an existing building.Parameter identification based on synthetic noisy experiments is performed to validate the presented method for optimal experimental design.Thus,the soil stiffness and strength parameters are identified according to both an intuitive and the elaborated method,employing the proposed OED strategy and experimental designs,making it possible to assess the feasibility of the OED results.
文摘Tunnel boring machines require extensive maintenance and inspection effort to provide a high availability.The cutting tools of the cutting wheel must be changed timely upon reaching a critical condition.While one possible maintenance strategy is to change tools only when it is absolutely necessary,tools can also be changed preventively to avoid further damages.Such different maintenance strategies influence the maintenance duration and the overall project performance.However,determine downtime related to a particular mainte-nance strategy is still a challenging task.This paper shows an analysis of the robustness to achieve the planned project performance of a maintenance strategy considering uncertainties of wear behavior of the cutting tools.A simulation based analysis is presented,imple-menting an empirical wear prediction model.Different strategies of maintenance planning are compared by performing a parameter vari-ation study including Monte-Carlo simulations.The maintenance costs are calculated and evaluated with respect to their robustness.Finally,an improved and robust maintenance strategy has been determined.
基金supported by the Natural Science Foundation of China(Nos.61306051,61306050)the National High Technology Program of China(No.2014AA032606)
文摘GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51572021, 51527802, and 51232001), Beijing Municipal Science & Technology Commission, and the Fundamental Research Funds for Central Universities. M. A. M. and Y. Z. would also like to acknowledge the support of the Newton International Research Collaboration Programme (No. NRCP/1415/129).
文摘The performance of metal-insulator-semiconductor (MIS) type tunneling diodes based on ZnO nanostructures is investigated through modeling. The framework used in this work is the Schr6dinger equation with an effective-mass approximation. The working mechanism of the MIS type tunneling diode is investigated by examining the electron density, electric field, electrostatic potential, and conduction band edge of the device. We show that a valley in the electrostatic potential is formed at the ZnO/MgO interface, which induces an energy barrier at the ZnO side of this interface. Therefore, electrons need to overcome two barriers: the high and narrow MgO barrier, and the barrier from the depletion region induced at the ZnO side of the ZnO/MgO interface. As the MgO layer becomes thicker, the valley in electrostatic potential becomes deeper. At the same time, the barrier induced at the ZnO/MgO interface becomes higher and wider. This leads to a fast decrease in the current passing through the MIS diode. We optimize the thickness of the MgO insulating layer, sandwiched between a ZnO film (in this work we use a single ZnO nanowire) and a metal contact, to achieve maximum performance of the diode, in terms of rectification ratio. An optimal MgO layer thickness of 1.5 nm is found to yield the highest rectification ratio, of approximately 169 times that of a conventional metal-semiconductor-metal Schottky diode. These simulated results can be useful in the design and optimization of ZnO nanodevices, such as light emitting diodes and UV photodetectors.
文摘Rock abrasivity influences wear of cutting tools and consequently,performance of mechanized tunneling ma-chines.Several methods have been proposed to evaluate rock abrasivity in recent decades,each one has its own advantages.In this paper,a new method is introduced to estimate wear of disc cutters based on rock cutting tests using scaled down discs(i.e.54 and 72 mm diameter).The discs are made of H13 steel,which is a common steel type in producing real-scale discs,with hardness of 32 and 54 HRC.The small-scale linear rock cutting machine and a new abrasion test apparatus,namely University of Tehran abrasivity test machine,are utilized to perform the tests.Tip width of the worn discs is monitored and presented as the function of the accumulated test run to classify the rock abrasion.Abrasivity tests show that by increasing the uniaxial compressive strength(UCS)of the rock samples,wear rate is doubled gradually that reveals the sensitivity of the test procedure to the main pa-rameters affecting the abrasivity of hard rocks.For the rocks with the highest UCS,the normal wear stops after performing 5 to 10 rounds of the tests,and then,deformation of the disc tip is detectable.Two abrasivity indices are defined based on the abrasivity tests results and their correlations with Cerchar Abrasivity Index(CAI)and UCS are established.Comparison of the established correlations in this study with previous investigations dem-onstrates the sensitivity of the indices to the parameters affecting wear of the disc cutters and repeatability of the outputs obtained from abrasivity tests using scaled down discs.Findings of this study can be used to enhance the accuracy of rock abrasivity classifications.