The mechanical decomposing and mechanochemical reductions of silver oxide for preparation of nanocrystalline silver powders by high planetary ball mill was investigated. XRD and HRSEM techniques were used to character...The mechanical decomposing and mechanochemical reductions of silver oxide for preparation of nanocrystalline silver powders by high planetary ball mill was investigated. XRD and HRSEM techniques were used to characterize the structural evolution and morphological changes of products. The results show that the nanostructured silver with an average crystallite size of 14 nm and internal strain of 0.75% is synthesized by mechanical decomposing of Ag2O after 95 h milling. While, the product of mechanochemical reduction of silver oxide using graphite after 22 h milling is nanostructured silver with an average crystallite size of 28 nm and internal strain of 0.44%.展开更多
Orthopedic applications of Fe have been hindered by the insufficient degradation rate.Alloying with noble elements(such as Ag,Au,and Pt)to generate galvanic couples is a feasible approach.However,the direct preparatio...Orthopedic applications of Fe have been hindered by the insufficient degradation rate.Alloying with noble elements(such as Ag,Au,and Pt)to generate galvanic couples is a feasible approach.However,the direct preparation of homogenous alloys by mechanical alloying or metallurgy is difficult because of the differences in strength,density,and toughness.In this study,Ag_(2)O was selected as the precursor phase for incorporation into Fe to achieve a homogeneous distribution of Ag,which was then reduced in situ to Ag via a mechanochemical reduction reaction during mechanical alloying.The composite powders were printed as implants by selective laser melting,where a fast cooling rate contributed to the retention of the phase distribution of the obtained powder.The electrochemical tests showed that the Fe-Ag_(2)O implant had a high corrosion current density(21.88±0.12μA/cm^(2))and instantaneous corrosion rate(0.23±0.05 mm/year).Moreover,the implant exhibited a faster degradation rate(0.22 mm/year)than Fe(0.15 mm/year)and Fe-Ag(0.21 mm/year)after immersion for 28 d.The acceleration mechanism of the implant could be attributed to the uniformly distributed Ag particles triggering many galvanic couples with the Fe grains,which was confirmed by the observation of the corrosion surface.In addition,the composite implants exhibited good biocompatibility and antibacterial properties.展开更多
文摘The mechanical decomposing and mechanochemical reductions of silver oxide for preparation of nanocrystalline silver powders by high planetary ball mill was investigated. XRD and HRSEM techniques were used to characterize the structural evolution and morphological changes of products. The results show that the nanostructured silver with an average crystallite size of 14 nm and internal strain of 0.75% is synthesized by mechanical decomposing of Ag2O after 95 h milling. While, the product of mechanochemical reduction of silver oxide using graphite after 22 h milling is nanostructured silver with an average crystallite size of 28 nm and internal strain of 0.44%.
基金the National Natural Science Foundation of China(Grant Nos.52105352,51935014,52165043,and 82072084)the JiangXi Provincial Natural Science Foundation of China(Grant No.20224ACB204013)+2 种基金the Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(Grant No.PT2020E002)the Guangdong Province Precision Manufacturing and Intelligent Production Education Integration Innovation Platform(Grant No.2022CJPT019)the Shccig-Qinling Program(Grant No.2022360702014891)。
文摘Orthopedic applications of Fe have been hindered by the insufficient degradation rate.Alloying with noble elements(such as Ag,Au,and Pt)to generate galvanic couples is a feasible approach.However,the direct preparation of homogenous alloys by mechanical alloying or metallurgy is difficult because of the differences in strength,density,and toughness.In this study,Ag_(2)O was selected as the precursor phase for incorporation into Fe to achieve a homogeneous distribution of Ag,which was then reduced in situ to Ag via a mechanochemical reduction reaction during mechanical alloying.The composite powders were printed as implants by selective laser melting,where a fast cooling rate contributed to the retention of the phase distribution of the obtained powder.The electrochemical tests showed that the Fe-Ag_(2)O implant had a high corrosion current density(21.88±0.12μA/cm^(2))and instantaneous corrosion rate(0.23±0.05 mm/year).Moreover,the implant exhibited a faster degradation rate(0.22 mm/year)than Fe(0.15 mm/year)and Fe-Ag(0.21 mm/year)after immersion for 28 d.The acceleration mechanism of the implant could be attributed to the uniformly distributed Ag particles triggering many galvanic couples with the Fe grains,which was confirmed by the observation of the corrosion surface.In addition,the composite implants exhibited good biocompatibility and antibacterial properties.