期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of nanostructure silver powders by mechanical decomposing and mechanochemical reduction of silver oxide 被引量:3
1
作者 Gholam Reza KHAYATI Kamal JANGHORBAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1520-1524,共5页
The mechanical decomposing and mechanochemical reductions of silver oxide for preparation of nanocrystalline silver powders by high planetary ball mill was investigated. XRD and HRSEM techniques were used to character... The mechanical decomposing and mechanochemical reductions of silver oxide for preparation of nanocrystalline silver powders by high planetary ball mill was investigated. XRD and HRSEM techniques were used to characterize the structural evolution and morphological changes of products. The results show that the nanostructured silver with an average crystallite size of 14 nm and internal strain of 0.75% is synthesized by mechanical decomposing of Ag2O after 95 h milling. While, the product of mechanochemical reduction of silver oxide using graphite after 22 h milling is nanostructured silver with an average crystallite size of 28 nm and internal strain of 0.44%. 展开更多
关键词 nanocrystalline silver silver oxide mechanical decomposing mechanochemical reduction
下载PDF
Construction of Fe/Ag galvanic couple by mechanochemical in-situ reduced Ag to accelerate the degradation of Fe-based implant
2
作者 YANG WenJing SONG Hao +2 位作者 ZHAO ZhengYu SHUAI CiJun PAN Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第10期2824-2836,共13页
Orthopedic applications of Fe have been hindered by the insufficient degradation rate.Alloying with noble elements(such as Ag,Au,and Pt)to generate galvanic couples is a feasible approach.However,the direct preparatio... Orthopedic applications of Fe have been hindered by the insufficient degradation rate.Alloying with noble elements(such as Ag,Au,and Pt)to generate galvanic couples is a feasible approach.However,the direct preparation of homogenous alloys by mechanical alloying or metallurgy is difficult because of the differences in strength,density,and toughness.In this study,Ag_(2)O was selected as the precursor phase for incorporation into Fe to achieve a homogeneous distribution of Ag,which was then reduced in situ to Ag via a mechanochemical reduction reaction during mechanical alloying.The composite powders were printed as implants by selective laser melting,where a fast cooling rate contributed to the retention of the phase distribution of the obtained powder.The electrochemical tests showed that the Fe-Ag_(2)O implant had a high corrosion current density(21.88±0.12μA/cm^(2))and instantaneous corrosion rate(0.23±0.05 mm/year).Moreover,the implant exhibited a faster degradation rate(0.22 mm/year)than Fe(0.15 mm/year)and Fe-Ag(0.21 mm/year)after immersion for 28 d.The acceleration mechanism of the implant could be attributed to the uniformly distributed Ag particles triggering many galvanic couples with the Fe grains,which was confirmed by the observation of the corrosion surface.In addition,the composite implants exhibited good biocompatibility and antibacterial properties. 展开更多
关键词 biodegradable implant mechanochemical reduction uniform dispersion galvanic corrosion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部