期刊文献+
共找到3,738篇文章
< 1 2 187 >
每页显示 20 50 100
Prison Term Prediction on Criminal Case Description with Deep Learning 被引量:3
1
作者 Shang Li Hongli Zhang +4 位作者 Lin Ye Shen Su Xiaoding Guo Haining Yu Binxing Fang 《Computers, Materials & Continua》 SCIE EI 2020年第3期1217-1231,共15页
The task of prison term prediction is to predict the term of penalty based on textual fact description for a certain type of criminal case.Recent advances in deep learning frameworks inspire us to propose a two-step m... The task of prison term prediction is to predict the term of penalty based on textual fact description for a certain type of criminal case.Recent advances in deep learning frameworks inspire us to propose a two-step method to address this problem.To obtain a better understanding and more specific representation of the legal texts,we summarize a judgment model according to relevant law articles and then apply it in the extraction of case feature from judgment documents.By formalizing prison term prediction as a regression problem,we adopt the linear regression model and the neural network model to train the prison term predictor.In experiments,we construct a real-world dataset of theft case judgment documents.Experimental results demonstrate that our method can effectively extract judgment-specific case features from textual fact descriptions.The best performance of the proposed predictor is obtained with a mean absolute error of 3.2087 months,and the accuracy of 72.54%and 90.01%at the error upper bounds of three and six months,respectively. 展开更多
关键词 Neural networks prison term prediction criminal case text comprehension
下载PDF
The long-term prediction of the oil-contaminated water from the Sanchi collision in the East China Sea 被引量:10
2
作者 YIN Liping ZHANG Min +1 位作者 ZHANG Yuanling QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第3期69-72,共4页
The condensate and bunker oil leaked from the Sanchi collision would cause a persistent impact on marine ecosystems in the surrounding areas. The long-term prediction for the distribution of the oil-polluted water and... The condensate and bunker oil leaked from the Sanchi collision would cause a persistent impact on marine ecosystems in the surrounding areas. The long-term prediction for the distribution of the oil-polluted water and the information for the most affected regions would provide valuable information for the oceanic environment protection and pollution assessment. Based on the operational forecast system developed by the First Institute of Oceanography, State Oceanic Administration, we precisely predicted the drifting path of the oil tanker Sanchi after its collision. Trajectories of virtual oil particles show that the oil leaked from the Sanchi after it sank is mainly transported to the northeastern part of the sink location, and quickly goes to the open ocean along with the Kuroshio. Risk probability analysis based on the outcomes from the operational forecast system for years 2009 to2017 shows that the most affected area is at the northeast of the sink location. 展开更多
关键词 Sanchi collision long-term prediction oil spill
下载PDF
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network 被引量:6
3
作者 金龙 金健 姚才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期428-435,共8页
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ... In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model. 展开更多
关键词 modular fuzzy neural network short-term climate prediction flood season
下载PDF
An Approach for Improving Short-Term Prediction of Summer Rainfall over North China by Decomposing Interannual and Decadal Variability 被引量:2
4
作者 HAN Leqiong LI Shuanglin LIU Na 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期435-448,共14页
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and d... A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions. 展开更多
关键词 summer rainfall short-term prediction decomposing DOWNSCALING
下载PDF
Verification of Short-Term Predictions of Solar Soft X-ray Bursts for the Maximum Phase (2000-2001) of Solar Cycle 23 被引量:3
5
作者 Cui-Lian Zhu and Jia-Long WangNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 《Chinese Journal of Astronomy and Astrophysics》 CSCD 北大核心 2003年第6期563-568,共6页
We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct prediction... We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA. 展开更多
关键词 sun: X-ray bursts sun: short-term prediction
下载PDF
Long-term Traffic Volume Prediction Based on K-means Gaussian Interval Type-2 Fuzzy Sets 被引量:10
6
作者 Runmei Li Yinfeng Huang Jian Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1344-1351,共8页
This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p... This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow. 展开更多
关键词 GAUSSIAN interval type-2 fuzzy sets K-MEANS clustering LONG-term prediction TRAFFIC VOLUME TRAFFIC VOLUME fluctuation range
下载PDF
Progress and Challenge of the Short-Term Climate Prediction 被引量:1
7
作者 Zeng Qing-Cun 《Atmospheric and Oceanic Science Letters》 2009年第5期267-270,共4页
The experience of developing a short-term climate prediction system at the Institute of Atmospheric Science of the Chinese Academy of Sciences is summarized,and some problems to be solved in future are discussed in th... The experience of developing a short-term climate prediction system at the Institute of Atmospheric Science of the Chinese Academy of Sciences is summarized,and some problems to be solved in future are discussed in this paper.It is suggested that a good system for short-term climate prediction should at least consist of (1) well-tested model(s),(2) sufficient data and good methods for the initialization and assimilation,(3) a good system for quantitative corrections,(4) a good ensemble prediction method,and (5) appropriate prediction products,such as mathematical expectation,standard deviation,probability,among others. 展开更多
关键词 short-term climate prediction ensemble prediction CORRECTION mathematical expectation standard deviation PROBABILITY CHAOS
下载PDF
Time distribution characteristics of regional macroseismic activity in the Sichuan-Yunnan region and its significance to mid-long term prediction
8
作者 黄玮琼 吴宣 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期368-374,共7页
The earthquakes with Ms≥6.0 are often gathered into belts or clusters and are roughly consistent with tectonic structure trends in the Sichuan-Yunnan (Chuan-Dian) region. The middle south part(98°-106°E, 21... The earthquakes with Ms≥6.0 are often gathered into belts or clusters and are roughly consistent with tectonic structure trends in the Sichuan-Yunnan (Chuan-Dian) region. The middle south part(98°-106°E, 21°-34°N) of South-North Seismic Zone can be zoned into seven small areas. There all were strong quakes with M_s≥7.0 historically in each small area. Ten earthquakes with M_s≥7.0 have occurred in this region since 1970 and they appeared in five small areas respectively. The relationships between occurrence-time and cumulative frequencies of strong quakes in these five areas are shown to be an exponential distribution or power function. By examining the inner coincidence it is indicated that these relationships are of definite significance to mid-long term macroseismic prediction of each area. 展开更多
关键词 macroseismic activity time distribution mid-long term prediction examination of inner coincidence
下载PDF
The middle-long term prediction of the February 3,1996 Lijiang earthquake(M_S=7) by the "criterion of activity in quiescence
9
作者 郭增建 秦保燕 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期477-480,共4页
Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When... Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When an active period of big earthquake activity appeared in wide region, in the place where earthquake (M_≥6) occurred in the past quiet period, the big earthquake with magnitude of 7 or more often occur there. We call the above-mentioned judgement for predicting big earthquake the 'criterion of activity in quiescence'. The criterion is relatively effective for predicting location of big earthquake. In general, error of predicting epicenter is no more than 100 km. According to the criterion, we made successfully a middle-term prediction on the 1996 Lijiang earthquake in Yunnan Province, the error of predicted location is about 50 km. Besides, the 1994 Taiwan strait earthquake (M_s=7.3), the 1995 Yunnan-Myanmar boundary earthquake (M_s=7.2) and the Mani earthquake (M_s=7.9) in north Tibet are accordant with the retrospective predictions by the 'criterion of activity in quiescence'. The windows of 'activity in quiescence' identified statistically by us are 1940-1945, 1958-1961 and 1979-1986. Using the 'criterion of activity in quiescence' to predict big earthquake in the mainland of China,the earthquake defined by 'activity in quiescence' has magnitude of 6 or more; For the Himalayas seismic belt, the Pacific seismic belt and the north-west boundary seismic belt of Xinjiang, the earthquake defined by 'activity in quiescence' has magnitude of 7, which is corresponding to earthquake with magnitude of much more than 7 in future. For the regions where there are not tectonically and historically a possibility of occurring big earthquake (M_s=7), the criterion of activity in quiescence is not effective. 展开更多
关键词 criterion of activity in quiescence middle-long term prediction Lijiang earthquake earthquake in Taiwan strait Mani earthquake
下载PDF
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:2
10
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 DATA Mining Time Series FUNDAMENTAL DATA DATA Frequency Application DOMAIN SHORT-term Stocks prediction
下载PDF
Short Term Traffic Flow Prediction Using Hybrid Deep Learning
11
作者 Mohandu Anjaneyulu Mohan Kubendiran 《Computers, Materials & Continua》 SCIE EI 2023年第4期1641-1656,共16页
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil... Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%. 展开更多
关键词 Short term traffic flow prediction principal component analysis stacked auto encoders long short term memory k nearest neighbors:intelligent transportation system
下载PDF
Gaussian Kernel Based SVR Model for Short-Term Photovoltaic MPP Power Prediction
12
作者 Yasemin Onal 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期141-156,共16页
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env... Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN. 展开更多
关键词 Short term power prediction Gaussian kernel support vector regression photovoltaic system
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
13
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Floating Car Data Based Nonparametric Regression Model for Short-Term Travel Speed Prediction 被引量:2
14
作者 翁剑成 扈中伟 +1 位作者 于泉 任福田 《Journal of Southwest Jiaotong University(English Edition)》 2007年第3期223-230,共8页
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,... A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective. 展开更多
关键词 K-Nearest neighbor Short-term prediction Travel speed Nonparametric regression Intelligence transportation system( ITS Floating car data (FCD)
下载PDF
Short Term Electric Load Prediction by Incorporation of Kernel into Features Extraction Regression Technique
15
作者 Ruaa Mohamed-Rashad Ghandour Jun Li 《Smart Grid and Renewable Energy》 2017年第1期31-45,共15页
Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a rea... Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a reasonable prediction, authors have applied and compared two features extraction technique presented by kernel partial least square regression and kernel principal component regression, and both of them are carried out by polynomial and Gaussian kernels to map the original features’ to high dimension features’ space, and then draw new predictor variables known as scores and loadings, while kernel principal component regression draws the predictor features to construct new predictor variables without any consideration to response vector. In contrast, kernel partial least square regression does take the response vector into consideration. Models are simulated by three different cities’ electric load data, which used historical load data in addition to weekends and holidays as common predictor features for all models. On the other hand temperature has been used for only one data as a comparative study to measure its effect. Models’ results evaluated by three statistic measurements, show that Gaussian Kernel Partial Least Square Regression offers the more powerful features and significantly can improve the load prediction performance than other presented models. 展开更多
关键词 Short term Load prediction Support Vector Regression (SVR) KERNEL Principal Component Regression (KPCR) KERNEL PARTIAL Least SQUARE Regression (KPLSR)
下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
16
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE LONG and SHORT-term MEMORY Network Keras DEEP Learning Framework Quality prediction
下载PDF
New scheme of anticipating synchronization for arbitrary anticipation time and its application to long-term prediction of chaotic states
17
作者 孙中奎 徐伟 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3226-3230,共5页
How to predict the dynamics of nonlinear chaotic systems is still a challenging subject with important real-life applications. The present paper deals with this important yet difficult problem via a new scheme of anti... How to predict the dynamics of nonlinear chaotic systems is still a challenging subject with important real-life applications. The present paper deals with this important yet difficult problem via a new scheme of anticipating synchronization. A global, robust, analytical and delay-independent sufficient condition is obtained to guarantee the existence of anticipating synchronization manifold theoretically in the framework of the Krasovskii-Lyapunov theory. Different from 'traditional techniques (or regimes)' proposed in the previous literature, the present scheme guarantees that the receiver system can synchronize with the future state of a transmitter system for an arbitrarily long anticipation time, which allows one to predict the dynamics of chaotic transmitter at any point of time if necessary. Also it is simple to implement in practice. A classical chaotic system is employed to demonstrate the application of the proposed scheme to the long-term prediction of chaotic states. 展开更多
关键词 anticipating synchronization long-term predictability chaotic systems
下载PDF
Research on TSIP method for medium-term earthquake prediction
18
作者 黄德瑜 朱元清 +1 位作者 陈颙 季颖 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第4期501-510,共10页
This paper introduces the space increased probability of strong earthquakes (SIP)-a new design based on the algorithm CN of time increased probability of strong earthquake (TIP). The authors have done a prediction res... This paper introduces the space increased probability of strong earthquakes (SIP)-a new design based on the algorithm CN of time increased probability of strong earthquake (TIP). The authors have done a prediction research passing in review of eight strong earthquakes with M>6 in the last 20 years in East China. The result shows that six of the eight strong earthquakes were in the space-time domain of the time and space probability of strong earthquake (TSIP) prediction. The prediction accuracy is 75%, the space-time domain rate of the TSIP precaution is 5%, the diagnosed value of R is 0. 70. So the TSIP as a method of medium-term earthquake prediction has good practicality, efficiency and prospects of applying. 展开更多
关键词 medium-term prediction Algorithm TSIP SEISMICITY
下载PDF
The Study of Medium- and Short-term Prediction for Artux Earthquake (M_S=6.9) and Usunan Earthquake (M_S=5.8) 被引量:1
19
作者 Jiang Zaisen, Zhao Zhencai, Wang Haitao, Wang Jiying, and Wang ShuangxuThe Second Crustal Deformation Monitoring Center, SSB, Xi’an 710054, China Seismological Bureau of Xinjiang Uygur Autonomous Region, Urumqi 830011, China 《Earthquake Research in China》 1998年第4期86-91,共6页
In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic r... In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic risk regions are judged based on long- and medium-term seismic risk regions and annual seismic risk regions determined by national seismologic analysis, combined with large seismic situation analysis. We trace and analyze the seismic situation in large areas, and judge principal risk regions or belts of seismic activity in a year, by integrating the large area’s seismicity with geodetic deformation evolutional characteristics. As much as possible using information, we study synthetically observational information for long-medium- and short-term (time domain) and large-medium -small dimensions (space domain), and approach the forecast region of forthcoming earthquakes from the large to small magnitude. A better effect has been obtained. Some questions about earthquake prediction are discussed. 展开更多
关键词 MEDIUM and SHORT-term EARTHQUAKE prediction Large seismic SITUATION GEODETIC deformation Synthetic analysis.
下载PDF
“Small earthquake modulation window” and its applications in medium-term prediction
20
作者 苏鸾声 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期51-56,共6页
Based on the observations of many years, it has been found that “small earthquake modulation windows” exist inthe situation of some special geological structures, which respond sensitively to the variations of regio... Based on the observations of many years, it has been found that “small earthquake modulation windows” exist inthe situation of some special geological structures, which respond sensitively to the variations of regional stressfields and the activities of earthquake swarms greater than moderate strong magnitude, and can supply some precursory information. More than two “small earthquake modulation windows” can also provide a general orientation of the first main earthquake of a earthquake cluster. Compared with “seismic window” based on frequency itis no doubt that the “modulation-window” has an unique characteristic of applicational significance to mediumterm earthquake prediction with a time scale of two or three years. 展开更多
关键词 medium-term prediction small earthquake activity stress rield EARTHQUAKE seismogenic window
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部